

Multi-phase electrolytes for redox flow batteries

Ing. M. Marek¹; Ing. P. Mazur, PhD¹ ¹UCT Prague, Dept. of chemical engineering, Technicka 5, 166 28 Prague, CZE

Introduction

Organic Electrolytes:

- Domestically producible
- Highly tunable

Oil

Water

Surfactant

Co-surfactant

Great solventNon viscous

- Conductive
- Non-flammableSpontaneously formin
- spontaneously formin

 Table 1. Composition of used microemulsion

<u>Aim</u>

- Identify suitable redox active species based on primary screening experiments such as solubility tests and cyclic/linear sweep voltammetry
- Carry out stability tests of identified species in charge-discharge cycling tests

 Mid-term low concentration stability cycling tests of 1,4-p-napthoquinone (-) and ferrocene (+) in a laboratory single cell

Disk Electrode experiments

RDE analysis of redox active species at glassy carbon to validate usability in RFBs

- reaction reversibility, kinetic constant, diffusivity, concentration analysis
- Promising candidates to be used in cycling tests

Solvent Impact

- MEs offer wider electrochemical window hindering H₂ evolution
- No evident impact on reaction reversibility MEs viable for RFB use
- Increased dissolution of O₂ in MEs oil phase
 - Remove How? N₂ purge, sonication

10 15 20 25 30 3 Cycle Number (-)

Fig. **5.** Charge discharge cycling test of 25mM 1,4-p-naphtoquinone and 50mM *ferrocene* in ME, CC 100 mA/cm², half-cll voltage controlled, catex F930rfd, graphite felt electrodes. Inset: Nyquist spectra before (green) and after the cycling load (red)

Problem:

Fig. **6.** Post-mortem CV after cycling of the anolyte (red) and *catholyte* (blue) dilluted to *100* ml, at glassy carbon, 10 mV/s, 20 °C, N₂ purged, mercury sulphate reference

diaphragm pumps

Still observing 20 %

decrease after 24 hrs

Redox active species identification

- From non-aqueous literature
- First sieve solubility in toluene
 Negolyte: 1,4-p-napthoquinone
 - Toluene solubility 0.54 mol/l
 - 1.08 mol/l of electrons
- **Posilyte**: *ferrocene*
 - Toluene solubility 0.87 mol/l
 - 0.87 mol/l of electrons

ose AQDS in The Nacional Action and a second seco

Oxygen is 37 times more soluble in toluene than in water at ambient conditions! • $rOhm = 120 \text{ ohm} \cdot \text{cm}^2$

Use Na4[Fe(CN)₆] as catholyte: *ferrocene* membrane fouling

Fig. 7. Laboratory single cell testing set-up

Conclusion

1,4-naphtoquinone unstable and undergoes degredation when submitted to charge-discharge cycling

Fig. **4.** redox reactions of *1,4-p-napthoquinone* and *ferrocene*

Microemulsion (in)compatibility

Contact

Matyas Marek UCT Prague Email: mareky@vscht.cz Phone: +420775642974

- *Ferrocene* causes increase in the ohmic resistance up to an extent of *1000*% and permeates through catex membrane
- Anex membranes unusable due to ohmic resistance
- O₂ dissolved in MEs causes self discharge and strongly complicates low concentration tests both in the cell and at the RDE
- Experimental aperture optimization to withstand toluene environment

References

1. Leanpolchareanchai, J.; Teeranachaideekul, V., Topical Microemulsions: Skin Irritation Potential and Anti-Inflammatory Effects of Herbal Substances. *Pharmaceuticals* **2023**, 16 (7), 999.

Acknowledgment

This publication was supported by the project "The Energy Conversion and Storage", funded as project No. CZ.02.01.01/00/22_008/0004617 by Programme Johannes Amos Comenius, call Excellent Research. This work was supported by TAČR, program THÉTA2, project no. TK02030001 and TS01030093.