Artificial intelligence to discover new chemistries

Maass, A., Dobberstein, N., Hamaekers, J.

Fraunhofer-Institute for Algorithms and Scientific Computing (SCAI) Schloss Birlinghoven 1, D-53757 Sankt Augustin, Germany

Generative AI for de novo molecular design: LLamol¹

	Numerical context			
SMILES	logP	SA score	molar weight	
C/C=C/CC	1.972	2.88	70	
CCC=C(C)C	2.363	2.63	84	
	X	,		
1.	,予	\sim		
data se	et	SIZE		
ZINC 15	5 ³			
		5171		
QM9 ^{4,5}	;	134	<	
QM9 ^{4,5} RedDB ⁶	5	134 31	<	
QM9 ^{4,5} RedDB ⁶ OPV ⁷	5	51VI 134 31 91k	<	
QM9 ^{4,5} RedDB ⁶ OPV ⁷ Pubche	5 mQC ^{8,9}	51VI 134 31 91k 5.3N	< /I	
QM9 ^{4,5} RedDB ⁶ OPV ⁷ Pubche CEP ¹⁰ s	mQC ^{8,9} ubset ¹¹	51VI 134 31 91k 5.3N 20k	<	
QM9 ^{4,5} RedDB ⁶ OPV ⁷ Pubche CEP ¹⁰ s ChEMB	5 mQC ^{8,9} ubset ¹¹ L ¹²⁻¹⁵	51VI 134 31 91k 5.3N 20k 2.3N	<	

generate compounds confined to relevant chemical subspaces

generative transformer model based on LLama2 architecture²

de	code	er blo	cks	
	soft	max		

- 8 decoder blocks
- ~15 M parameters
- 2 days of training on Nvidia A100 GPU
- trained on 12.5 M superset of organic compounds
- new training method Stochastic Context Learning for maximum flexibility and robustness
- model handles single- and multi-conditional organic molecule generation with up to four conditions
 - valid molecular structures in SMILES notation
 - control creativity via 'temperature' parameter
 - incorporates numerical and/or SMILES sequence
 - easily expandable with new properties

Dobberstein N, et al (2023) LLamol: A Dynamic Multi-Conditional Generative Transformer for De Novo Molecular Design. https://arxiv.org/abs/2311.14407	
Touvron H. et al (2023) Hama 2: open foundation and fine-tuned chat models. http://arviv.org/abs/2307.09288arXiv:2307.09288	

- 3. Sterling T, Irwin JJ (2015) ZINC 15 ligand discovery for everyone. https://doi.org/10.1021/acs.jcim.5b00559
- 4. Ramakrishnan R, et al. (2014) Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data 1. https://doi.org/10.1038%2Fsdata.2014.22
- 5. Ruddigkeit L, et al. (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. https://doi.org/10.1021%2Fci300415d
- 6. Sorkun E, et al (2022) RedDB, a computational database of electroactive molecules for aqueous redox flow batteries. https://doi.org/10.1038%2Fs41597-022-<u>01832-2</u>
- 7. John PCS et al (2019) Message-passing neural networks for high-throughput polymer screening. <u>https://doi.org/10.1063%2F1.5099132</u>
- 8. Nakata M, et al (2020) PubChemQC PM6: data sets of 221 million molecules with optimized molecular geometries and electronic properties. https://doi.org/10.1021/acs.jcim.0c00740
- 9. Nakata M, Shimazaki T (2017) PubChemQC project: a large-scale first-principles electronic structure database for data-driven chemistry. https://doi.org/10.1021/acs.jcim.7b00083
- 10. Hachmann J et al (2011) The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid. https://doi.org/10.1021%2Fjz200866s
- 11. Duvenaud D, et al (2015) Convolutional networks on graphs for learning molecular fingerprints. <u>http://arxiv.org/abs/1509.09292arXiv:1509.09292</u>
- 12. Zdrazil B et al (2023) The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. https://doi.org/10.1093/nar/gkad1004
- 13. Blackshaw J et al (2009) CHEMBL database release 31. https://doi.org/10.6019/chembl.database.31
- 14. Davies M et al (2015) Chembl web services: streamlining access to drug discovery data and utilities. <u>https://doi.org/10.1093/nar/gkv352</u> 15. Jupp S et al (2014) The ebi rdf platform: linked open data for the life sci-ences. https://doi.org/10.1093/bioinformatics/btt765

https://	github.com/Fraunhofer-SCAI/llamo	

condition	novelty %	Uniqueness %	Validity %	MAE
None	89.7	99.9	99.5	-
logP	85.5	99.7	99.4	0.2
SAscore	85.4	98.8	82.1	0.4
molar weight	84.3	99.6	99.4	4

Predictive AI for estimating the redox potential¹¹

 $E^o = -\frac{\Delta G}{zF}$ construct from given molecule A_{ox} reduced form A_{red} via generic reaction templates

- 70 k redox pairs found in precomputed data sets
 - determine

chemistry:

- differential features between A_{ox} and A_{red}
- energetic difference between A_{ox} and A_{red}
- train graph convolutional network on molecular features and energy differences
- predict energy difference for novel compounds
 - ~50 predictions/sec
 - general trend reproduced^{14,15}
 - identify most promising posolyte/negolyte candidates by max OCV

www.redoxfox.scai.fraunhofer.de

- 11. Barker J, et al. (2021). Rapid prescreening of organic compounds for redox flow batteries: A graph convolutional network for predicting reaction enthalpies from SMILES. https://doi.org/10.1002/batt.202100059
- 12. Glavatskikh M, et al. (2019). Dataset's chemical diversity limits the generalizability of machine learning predictions. https://doi.org/10.1186/s13321-019-0391-2
- 13. Maass, A. (2023) SONAR -- experimental redox potentials for organic compounds undergoing 2-electron/2-proton transfer reactions. https://zenodo.org/doi/10.5281/zenodo.10200227
- 14. Maass, A. (2024) heat of hydrogenation for diverse organic compounds -- experimental and calculated data for 166 unique reactions, https://zenodo.org/doi/10.5281/zenodo.10820775
- 15. Chen G, et al (2019). Alchemy: A quantum chemistry dataset for benchmarking ai models. <u>https://arxiv.org/abs/1906.09427</u>

Summary

- prototypic machinery for AI-based creation and evaluation of new chemistries in place
- improvements planned
 - generative model: respond to more conditions, train on more relevant properties (e.g. HOMO/LUMO gap)
 - predictive model: train on larger & standardized data; train new model on other properties (e.g. solubility)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 875489.

