Zürcher Hochschule für Angewandte Wissenschafte

A Hybrid 3D/2D Model for Performance Predictions of Organic Flow Battery Cells R. P. Schärer, J. O. Schumacher Institute of Computational Physics, ZHAW, Winterthur, Switzerland

Z ሓ

Introduction

Flow batteries are an emerging technology to address the growing need for large-scale energy storage of intermittent energy sources, such as photovoltaics and wind. While the global electrochemical storage market is currently dominated by lithium-ion batteries, flow battery systems offer an attractive alternative thanks to their long lifetime, fire safety, and flexibility in scaling capacity and power.

Organic compounds offer a vast chemical space for potentially viable redox species. The possibility of local synthesis reduces the risks associated with global supply chains

Pressure Distribution with Different Flow Fields

and represents a path towards more sustainable energy storage systems.

To accelerate the prototyping of new flow cells, we have developed a steady-state, nonisothermal model for performance predictions of single flow battery cells in COMSOL Multiphysics[®] [5]. The model is based on a macrohomogeneous description of the transport processes in the flow cell, which consists of current collectors, flow field channels, porous electrodes, and a semi-permeable membrane.

Hybrid 3D/2D Approach

- The cell model is divided into two submodels: a 3D electrolyte flow submodel and a coupled 2D electrochemical submodel.
- The two submodels are coupled by using the averaged 3D velocity field of the flow model in the 2D electrochemical model.
- This hybrid approach allows for a significant reduction of the required computational resources, while capturing the impact of the 3D flow field.

3D Electrolyte Flow Submodel

• Solves for 3D velocity and pressure fields of the electrolyte flow described by: -Incompressible Navier-Stokes equation in the flow channels: $\rho(\mathbf{v}\cdot\nabla)\mathbf{v} = -\nabla p + \mu\nabla^2\mathbf{v}, \quad \nabla\cdot\mathbf{v} = 0$

Pressure drop at a fixed flow rate $Q = 16 \,\mathrm{mL/min}$ for the flow-through flow field (FTFF), flow-by flow field (FBFF), serpentine flow field (SFF), and interdigitated flow field (IDFF).

Validation with the MV/TEMPTMA System

-Brinkman equation in the porous electrode domains:

$$\mathbf{v} = -rac{K_h}{\mu}
abla p + rac{K_h}{arepsilon}
abla^2 \mathbf{v}$$

2D Electrochemical Submodel

- Solves coupled system of mass, charge, and heat transport.
- 2D cell domain extends along the
- -through-plane direction (x) of the cell assembly
- and the forced-flow direction (y)
- 2D velocity field is obtained by averaging the 3D velocity field of the flow model along the z-direction (width of cell).

Electric Potential (Electrons)

Electric Potential (lons)

Energy Balance

Momentum Balance

Species Mass Balance

y							
	$\Omega_{\rm CC}^-$	Ω^{-}_{FF}	Ω^{-}_{PE}	$\Omega_{\rm SEP}$	$\Omega_{ m PE}^+$	$\Omega^+_{ m FF}$	$\Omega_{\rm CC}^+$
	tor		de		de		tor
	ollect	ield	ectro	ator	ectro	ield	ollect
	Ŭ	L >	Ele	ara	Ele	L >	Ŭ
	Irrent	Flov	rous	Sep	rous	Flov	irrent
	Cu		Ро		Ро		Cn

• Diffusion coefficient is evaluated based on an effective porous electrode model [2].

Predicted polarization curves and experimental data of a lab-sized 5 cm^2 cell [1].

Resolved Fields for the IDFF Geometry

References

[1] G. Mourouga, R. P. Schaerer, et al., Electrochim. Acta, 2022, doi: 10.1016/j.electacta.2022.140185

• Contact resistance between current collector and porous electrode is accounted for by an effective model $R_c(p_c) = a(p_c/p_c^{\text{ref}})^{-b} [m\Omega \cdot cm^2]$ fit to experimental data. • Summary of balance laws in the electrochemical submodel:

Variable	e Flux	Balance Law
ϕ_s	$oldsymbol{J}_s = -\sigma^{ ext{eff}}_s abla \phi_s$	$\nabla \cdot \boldsymbol{J}_e = S_i$
ϕ_l	$oldsymbol{J}_l = -(\sigma_l^{ ext{eff}} abla \phi_l + \sum_lpha z_lpha arepsilon D^*_lpha abla c_lpha)$	$\nabla \cdot \boldsymbol{J}_l = -S_i$
c_{lpha}	$oldsymbol{N}_{lpha} = -arepsilon (D^*_{lpha} abla c_{lpha} + z_{lpha} D^{ ext{eff}}_{lpha} c_{lpha} abla \phi_l)$	$\nabla \cdot (c_{\alpha} \boldsymbol{v} + \boldsymbol{N}_{\alpha}) = S_{\alpha}$
T	$\boldsymbol{q} = -\lambda \nabla T$	$\nabla \cdot (c_p \boldsymbol{v} T + \boldsymbol{q}) = S_T$

• Here we consider the all-organic MV/TEMPTMA system with half-cell reactions:

- [2] J. K. Wlodarczyk, R. P. Schaerer, K. A. Friedrich, and J. O. Schumacher, Upscaling of Reactive Mass Transport through Porous Electrodes in Aqueous Flow Batteries, J. Electrochem. Soc., 2024, doi: 10.1149/1945-7111/ad258e.

[3] H. Al-Fetlawi, A. A. Shah, and F. C. Walsh, Electrochim. Acta, 2009, doi: 10.1016/j.electacta.2009.08.009. [4] K. Oh, H. Yoo et al., Energy, 2015, doi: 10.1016/j.energy.2014.05.020. [5] COMSOL Multiphysics[®] v. 6.2. www.comsol.com. COMSOL AB, Stockholm, Sweden.

Acknowledgements

The authors gratefully appreciate the financial support from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 875489.

₽́T_EX TikZ**poster**