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Introduction Pressure Distribution with Different Flow Fields
Flow batteries are an emerging technology to address the growing need for large-scale FTFF FBFF
energy storage of intermittent energy sources, such as photovoltaics and wind. While SPe e

the global electrochemical storage market is currently dominated by lithium-ion
batteries, flow battery systems offer an attractive alternative thanks to their long
lifetime, fire safety, and flexibility in scaling capacity and power.
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Organic compounds offer a vast chemical space for potentially viable redox species.
The possibility of local synthesis reduces the risks associated with global supply chains

and represents a path towards more sustainable energy storage systems. i
To accelerate the prototyping of new flow cells, we have developed a steady-state, non- SFF IDFF
isothermal model for performance predictions of single flow battery cells in COMSOL Pa Pa
Multiphysics® [5]. The model is based on a macrohomogeneous description of the Zgg 800
transport processes in the flow cell, which consists of current collectors, flow field oo ;ZZ
channels, porous electrodes, and a semi-permeable membrane. - 600 o
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e T he cell model is divided into two submodels: a 3D electrolyte flow submodel and 2 0 0

Pressure drop at a fixed flow rate () = 16 mL /min for the flow-through flow field (FTFF), flow-by flow field

a coupled 2D electrochemical submodel. _ | low-thr _
(FBFF), serpentine flow field (SFF), and interdigitated flow field (IDFF).

e The two submodels are coupled by using the averaged 3D velocity field of the flow
model in the 2D electrochemical model.

e [ his hybrid approach allows for a significant reduction of the required computational Validation with the MV/TEM PTMA System

resources, while capturing the impact of the 3D flow field.

14
b L 150
— 12 s
3D Electrolyte Flow Submodel = >
o, 1.0 g 100
S8 i > I
. . _ <IN g ]
e Solves for 3D velocity and pressure fields of the electrolyte flow described by: > 08 8
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— Incompressible Navier-Stokes equation in the flow channels: 0.6 LE
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— Brinkman equation in the porous electrode domains: Current Density [mA/cm?] Current Density [mA/cm?]
=@ Experiment Model === EXxperiment Model
Ky, Koo
V = ——Vp + —Vv Predicted polarization curves and experimental data of a lab-sized 5 cm? cell [1].
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2D Electrochemical Submodel Resolved Fields for the IDFF Geometry
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e Solves coupled system of mass, charge, and heat transport. A 641 A 304.19
e 2D cell domain extends along the a 1304
L 600
—through-plane direction (x) of the cell assembly . 503
—and the forced-flow direction (y) 00 205
e 2D velocity field is obtained by averaging the 3D velocity field of the flow model 450 o1
along the z-direction (width of cell). 400
! 350 300
Yy
Q(_EC QEF QEE Qgsgp Q;’_E Ql—ii‘_F QEIJ_C Electric Potential (Electrons) 300 299
250
g Electric Potential (lons)
5 kS @ 5 v 227 ¥ 298.15
QO @) @) QO
% % = S = % % Energy Balance Species concentration of MV*" in the flow field channels and porous electrode in the negative half-cell and
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Variable Flux Balance Law 2 HpTySIcs T roche o

Os J, = -0V, V- -J, =5
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