

Institute of Electrical Engineering (ETI) **Battery Technology Center** Hermann-von-Helmholtz-Platz 1, Bldg. 420 76344 Eggenstein-Leopoldshafen, Germany www.batterietechnikum.kit.edu

Advanced Characterization of a Commercial Scale Vanadium Redox Flow Battery at Controlled Temperature Levels

Felix Schofer¹, Lakshimi Narayanan Palaniswamy¹, Nina Munzke¹, Christian Kupper¹, Marc Hiller¹. Frank Säuberlich²

¹Karlsruhe Institute of Technology, ²1st Flow Energy Solutions GmbH

01 Motivation

- In the BiFlow project, a newly developed Thermal Coupling Module (TCM) [1] allows heating up or cooling down the electrolyte of a 21 kW / 120 kWh Vanadium Redox Flow Battery (VFB) [2]
- The VFB is specifically adapted to operate at temperatures from 10 to 50 °C, and can thus be used as thermal storage, or operated in an optimized temperature range

Fig 1. Installation in Bruchsal. Germany with the VFB (left) and TCM (right)

03 Cell internal resistance

- The characterization allows the determination of the internal resistance of the three stacks at different values of AC power. SoC and temperature
- Stack resistance is calculated using:

Left and middle plot include error bars to show standard deviation of the measurements

05 Auxiliary power consumption

System efficiency is influenced by the auxiliary power consumption of the VFB

02 Characterization Methods

- Stack resistance R_{Stack} is determined by executing a step profile for the AC-power (Fig. 2)
- Measurements are performed with all permutations of three factors Nominal power: -21 kW / 21 kW
 - SoC Range: 10 % intervals from 0 to 100 % (e.g. 30-40 %)
 - Temperature: 15-20 °C (cold), 30-35 °C (warm), 45-50 °C (hot)

- 04 Round trip analyses

- To determine system efficiency, the VFB was subjected to round trips from 0 to 100 % SoC at 7, 14 and 21 kW target power and the aforementioned temperature levels
- System is characterized using different efficiencies [3]:
 - Coulomb efficiency (CE): $\frac{\int I_{\text{Stacks,discharge}}}{G}$ ∫ I_{Stacks,charge}
 - DC Energy Efficiency (DE): $\frac{\int P_{DC,discharge}}{\int P_{DC,charge}}$
 - Voltage Efficiency (VE): DE/CE

 - System Efficiency (SE): $\frac{\int P_{AC,charge} + P_{Aux,charge} + P_{Aux,discharge}}{\int P_{AC,charge} + P_{Aux,charge} + P_{Aux,discharge}}$
- CE lowers with temperature while VE increases, both possibly due to an increased reactivity of the electrolyte
- SE increases significantly with temperature, due to a decrease in pump losses at high temperatures

www.kit.edu