Redox Flow Batteries: Current Market and Technology Status

Christos Iraklis, Ahmed Hesham Balawi, Thomas Altmann ACWA Power – Innovation and New Technology Kingdom of Saudi Arabia

- | REDOX FLOW BATTERY vs X 01
- Power and Energy capacity are decoupled offering increased modularity. >Very Long Lifetime, Minimal Capacity Degradation, Augmentation not required. >Non-flammable, Non-explosive, Zero thermal runaway risk, Safe in transportation. >Up to 97% recyclable materials and 100%

- -Lithium-Ion
- -Nickel-Hydrogen
- -Sodium-Ion
- -Sodium Nickel Chloride
- -Ultra Capacitors
- -Zinc Hybrid

- recyclable electrolytes.
- \triangleright Operation at high temperatures without significant cooling requirements. \geq Room for further improvement of RTE, energy and power density, and cost.

Readiness Level												Anolyte	/Anode									
					0	Barran	Anthraquir		Quinter		FI	Fluorenon	Sodium	Libertary and			Gradavina	71	C		Character	
		lin	litanium	Iron	Copper	Bromine	Vanadium	one	Quinone	Viologen	Polysulfide	e	Hydroxide	Hydrogen	Lead	Lithium	Cadmium	Zinc	Sulfur	Zincate	Chromium	Ruthenium
Iro	n															1						
Ce	rium															:						
Ma	anganese				Ê								*		<u></u>		***************					
Ch	loride												/			*			[
Co	pper															÷						:
Ch	romium				<u> </u>		•••••••						·				•					
Po	lyhalide						;										1]
Va	nadium																		[
Ca	dmium		}													1						
Lea	ad												, , ,									
TE/	A				-																	
An	thraquinone																					:
Po	lysulfide																					
Su	lfur																					
Bro	omine																					
Su	Iphate			[[<u> </u>						[
Co	balt																					
광 Hy	droquinone				1											•						
음 Qu	inone				-		-									1						
C TEI	MPO																					
ਦੇ Fe	rrocene																					
ਰੂ Fe	rro/Ferricyanide				[[1						
荒 Hy	drogen Peroxide						[
Ha	logen																					
Bro	omate]						
Lea	ad Dioxide																					
loc	dide/Polyiodide		<u>.</u>]						}									
Ox	ygen																					
Ch	loranil		<u>.</u>		<u>.</u>		<u>.</u>									<u>.</u>						
Nic	ckel				<u>.</u>																	
Nic	ckel Metal Hydride		<u>.</u>														<u>.</u>					
Be	nzoquinone		<u>.</u>	[<u>.</u>									<u>.</u>						<u>.</u>
loc	dine				<u>.</u>		<u>.</u>									<u>.</u>						
Po	lyaniline				l											<u>.</u>						
Me	etal hydride		<u>.</u>										;									
Sa	lt		<u>.</u>													<u></u>						
Die	oxide		<u>.</u>		<u>;</u>		<u>.</u>															
TM	1PD				ļ																	
Be	nzene																					
Ac	etylacetonate				1																	

02 | THE REDOX FLOW BATTERY FAMILY

- Most commercial products are using vanadium based electrolytes.
- > Titanium, Iron, Vanadium, Hydrogen, Zinc and Bromine

- based electrolytes are the most matured technologies (TRL4 - TRL9).
- R&D efforts to decrease electrolyte and power stack cost, increase energy density, power density and efficiency.

03 | THE REDOX FLOW BATTERY WORLD MAP

- > 35+ Manufacturers in USA, Canada, Europe, Australia and Asia.
- \succ Most suppliers offer vanadium based products.
- \succ A few are exploring iron, zinc, bromine, hydrogen based and organic electrolytes.
- > 1.3+ GWh installed or under construction worldwide including pilot projects.