

Effects of Metal Sulfate Impurities on the Vanadium Redox Flow Battery

Maedeh Pahlevaninezhad, Ehsan Aminfar, Majid Pahlevani, Edward P.L. Roberts

Introduction

Vanadium Redox Flow Battery (VRFB) Advantage:

>Single element Cheap solvent (water) **Disadvantage:**

>Vanadium cost

Low energy density

Material Characterization

Electrochemical Characterization

Fig. 2. Cyclic voltammetry comparison of 0.1 M of MnSO₄, FeSO₄, and Al₂(SO₄)₃ (a) in 1.6 M VOSO₄, 3 H₂SO₄ for V²⁺/V³⁺ redox reaction, and (b) in 1.6 M V₂(SO₄)₃, 3 M H₂SO₄ solutions for VO²⁺/VO₂⁺ redox reaction with scan rate of 10 mVs⁻¹.

Battery Performance Results

Fig. 5. a) EDS mapping of the positive carbon paper electrodes before and after cycles, and b) EDS mapping of the negative carbon paper electrodes before and after cycles.

Fig 6. Raman spectra and XRD patterns obtained on carbon paper electrodes before and after 200 VRFB cycles, in the absence and presence of impurities. Raman spectra collected from: a) flake sites on the negative electrode; b) fiber sites on the negative electrode; c) flake sites on the positive electrode; and d) fiber sites on the positive electrode. XRD patterns for the e) negative and g) positive carbon paper electrode in the presence of Mn²⁺ and Al³⁺ impurities.

Summary

- \rightarrow Impurities affect the V²⁺/V³⁺ reaction more than VO²⁺/VO²⁺ redox reaction
- \rightarrow Mn²⁺ electrolyte impurity did not affect VRFB performance.

- \succ VRFB capacity decreased by 36% in presence of 0.1 M Fe²⁺.
- \succ Capacity of VRFB dropped rapidly when Al³⁺ was present.
- \geq Al³⁺ led to precipitation of Al and V oxides on the electrodes.

Contact info:

maedeh.pahlevaninezhad@sait.ca; edward.roberts@ucalgary.ca

Canada Foundation

Fondation canadienne pour l'innovation

