

Parametrisation and validation of a tool for the electrical design of tubular redox flow stacks

Fabian Brandes^{1),2),3)}, Antonio Chica Lara³⁾, Thorsten Struckmann¹⁾

- 1) Hamburg University of Applied Sciences, Heinrich-Blasius–Institute for Physical Technologies, Hamburg, Germany
- 2) Hamburg University of Applied Sciences, Competence Center for Renewable Energy and Energy Efficiency, Hamburg, Germany
- 3) Instituto de Tecnología Química (Universitat Politècnica de València- Consejo Superior de Investigaciones Científicas), València, Spain

Introduction

All-vanadium flow batteries (VFB) with a tubular cell geometry offer advantages over the common planar design [1,2]:

- Improved stability
- Cost-saving potentials through production of the components by (co-) extrusion
- More flexible electric cell-setup, possibly reducing shunt currents

While a first generation of tubular substacks showed promising results [3], a design tool for the design of tubular substacks and stacks is necessary to reduce material usage. Existing models [4] aren't suited to the tubular geometry. In this work, we report on further development of the design tool [5] with a focus on the electrical side of the VFB.

Experimental

A first generation of tubular VFB substacks consisting of 5 tubular cells connected electrically in parallel was assembled and characterisation measurements were conducted:

charge and different flow rates Fig. 1 - Tubular single cell and substacks.

- Single cell polarisation curves at medium (50%) state of charge and different flow rates (6.4-24 ml min⁻¹).
- Substack charge/discharge cycles at different constant current densities (30, 70 and 100 mA cm⁻²).

Model expansion

- A **SoC-correction** for the activation and concentration overpotentials was implemented.
- To incorporate side reaction effects, a current correction via coulomb efficiency was implemented.
- The model was expanded to the **stack-level**, using existing structures.

Fig. 2 - Structure of the design tool with the stacklevel expansion.

Results

The model was parametrised and validated with experimental data from the first generation of tubular substacks:

Cell level:

Fig. 3 - SoC-correction of a charge/discharge cycle of a single tubular cell.

Substack level:

Fig. 4 - Comparison of experimental and simulated data of a 5p substack.

Stack level:

Fig. 5 - A simulated 5s stack consisting of 5p substacks.

Outlook

- Further parametrisation and validation with characterisation and long term measurement data from second-generation tubular substacks and stacks.
- Coupling with a microscopic multiphysics model for more accurate ASR and fluid flow simulation.
- Implementation of a crossover model.
- Model-based optimisation of the tubular substack and stack design.

Contact

hamburg.de

Acknowledgements

This study is conducted within the ongoing research project TuRoX and its predecessor StaTuR. We want to thank fumatech BWT GmbH, Uniwell Rohrsysteme GmbH, WEVO-CHEMIE GmbH, Jenabatteries GmbH and the DECHEMA research institute for the cooperation.

References

Papers, Brussels, Belgium, 2022

- [1] Ressel et al. (2021). An all-extruded tubular vanadium redox flow cell Characterization and model-based evaluation, Journal of Power Sources Advances, Volume 12, 100077
- [2] Stolze et al. (2018). Micro-Tubular Flow Cell Design Utilizing Commercial Hollow Fiber Dialysis Membranes for Size-Exclusion Based Flow Batteries, *Energy Technol. 2018, 6*, 2296. [3] Struckmann et al. (2022). StaTuR – Redox flow stacks with tubular cell design, *The International Flow Battery Fo-*
- rum Conference Papers, Brussels, Belgium, 2022 [4] Puleston et al. (2022). Modelling and Estimation of Vanadium Redox Flow Batteries: A Review, Batteries, 8, 121. [5] Brandes et al. (2022). A design tool for tubular redox flow stacks, *The International Flow Battery Forum Conference*

phone:

e-mail: fabian.brandes@haw-

Federal Ministry of Education and Research

Funded by:

+49 40 428 75-8736