

Gamma-Aminobutyric Acid-Functionalized Naphthalene Diimide for Aqueous Organic Flow Batteries

First limiting

current

400 rpm

900 rpm

econd limiting

0.00

-0.05

Electrode

Accessing more than 90% of the capacity at different current densities

Fast kinetics and low ohmic resistance (High Energy Efficiency)

Failure: due to the water transport and pH drop while cycling

20 mV/s 50 mV/s

75 mV/s

0 ـ ر0

GABA

At different current densities in the

Long time cycling at 60 mA/cm²

beginning

Mahsa Shahsavan*, Cedrik Wiberg, Pekka Peljo

Battery Materials and Technologies Research Group, University of Turku, Turku, Finland *mahsa.shahsavan@utu.fi

- Flow batteries utilizing organic molecules are considered as one of the low-cost energy storage systems
- 1,4,5,8-naphthalene diimides (NDIs) are one of the possible candidate molecules for FBs

OH

- NDI molecules undergo a two-electron reduction reaction and also self-associate due to π - π stacking of their naphthalene core
- In the present work, electrochemical properties and cycling stability of gamma-aminobutyric acid-functionalized naphthalene diimide (GABA-NDI) were studied.

0.0025

0.0000

-0.0025

