Mass-transfer measurements at porous 3D Pt-Ir/Ti electrodes in a direct borohydride fuel cell
Page 14
Abdulaziz A. Abahussain, Carlos Ponce de Leon, Frank C. Walsh
University of Southampton, UK

Effect of oxidation and reduction on vanadium kinetics at glassy carbon electrodes; surface area and surface state
Page 16
Maria Alhajji, Andrea Bourke D. Noel Buckley, Robert Lynch
Department of Physics, Bernal Institute, University of Limerick, Ireland
Case Western Reserve University, USA

Status of zinc-based redox flow batteries: a technological review
Page 18
Luis F. Arenas, Carlos Ponce de León, Frank C. Walsh
Electrochemical Engineering Laboratory, Department of Mechanical Engineering, University of Southampton, UK

The improvement of redox flow energy storage with an industry-academia consortium in Northern Ireland
Page 20
Laleh Bahadori, Sophie Tyrrell, Nicoloy Gurusinghe, Tim Littler, Martin Atkins, Peter Nockemann
School of Chemistry and Chemical Engineering, Queen’s University Belfast, UK
School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, UK

Testing of a prototype 25 kW/50 kWh Zn-Br₂ battery at the Power Networks Demonstration Centre and integrated to a community wind turbine
Page 22
Leonard Berlouis, Declan Bryans, Jawwad Zafar, Paul Tuohy, Tae Hyuk Kang, Dae Sik Kim, Dong Joo Kim, Michael Shaw, Patrick Atkinson and Andrew Peacock
University of Strathclyde, UK
Lotte Chemical Research Institute, South Korea
Findhorn Foundation College, UK
Heriot Watt University, UK
The “Power Drop Effect” during operation of a vanadium redox flow battery
Page 24
Arjun Bhattacharai, Adam Whitehead, Ruediger Schweiss, Guenther Scherer, Nyunt Wai, Tam D. Nguyen, Purna C. Ghimire, Huey Hoon Hng
Nanyang Technological University, Singapore
redT energy plc., UK
SGL Carbon GmbH, Germany
Hagglingen, Switzerland

Sustainable energy storage market in Iran; current status and recent opportunities for RFB investment
Page 25
Seyyed Saeid Farhadi, Ali Davoodi, Ahad Zabet
Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Iran

A low-cost electrochemical impedance spectroscopy measurement device for online determination of electrolyte charge imbalance in vanadium flow batteries
Page 26
Thomas Buczkowski, Michael Schäffer, Peter Fischer, Karsten Pinkwart, Jens Tübke
Fraunhofer Institute for Chemical Technology, Germany

Carbon and graphite components for flow batteries - current status, trends and prospects
Page 28
Burak Caglar, Christian Ruediger, Ruediger Schweiss, Kathlynne Duong
SGL CARBON GmbH, Germany
SGL TECHNIC Inc., USA

An integrated thermal to electrical energy conversion and storage system
Page 30
Hui Cao, XueMin Zhao, Yanqi Zhao, Peter Slater, Yulong Ding
University of Birmingham, UK
Southern University of Science and Technology, People’s Republic of China

1D electrode model for half-cell characterization of a redox flow battery
Page 32
Mathilde Cazot, Sophie Didierjean, Gaël Maranzana, Jérôme Dillet, Florent Beille
LEMTA – Université de Lorraine – CNRS, France
KEMWATT, France

An optimal flow frame design for the Fe/Cr flow battery
Page 34
Yun Young Choi, Seongyoon Kim, Mingyu Yang, Ki Jae, Kim and Jung-Il Choi
Yonsei University, Korea
Konkuk University, Korea
Coordination chemistry flow battery
Page 36
Adam Morris-Cohen
Lockheed Martin Energy, USA

One-year field test of a fast-acting zinc-bromine 20 kW / 60 kWh flow battery system to develop a business model for distributed small and medium sized storage projects in the Dutch electricity market
Page 38
Jeroen de Veth
Trinergie, Netherlands

Field experience and application benefits with new generation VRFB
Page 40
John DeBoever, Zhenguo “Gary” Yang
UniEnergy Technologies, USA

Enhanced performance of membrane separated bromine-based flow batteries using complexing agents
Page 42
Ran Elazari, Ori Rorlik, Iris Ben-David, Olga Golberg-Oster
ICL Industrial Products R&D, Israel

Spatially resolved investigation of electrode compression effects in the vanadium redox flow battery
Page 44
Purna C. Ghimire, Arjun Bhattarai, Rüdiger Schweiss, Günther G. Scherer, Nyunt Wai, Qingyu Yan
Interdisciplinary Graduate School, Nanyang Technological University, Singapore
Energy Research Institute, Nanyang Technological University, Singapore
School of Material Science and Engineering, Nanyang Technological University, Singapore
SGL Carbon GmbH, Germany
5607 Hägglingen, Switzerland

ElectriStor™ – setting a new cost and performance standard for VRB
Page 46
H. Frank Gibbard, Gregory Cipriano, Reinder Boersma
WattJoule Corporation, USA

Effects of pressure differences between flow battery half-cells
Page 48
Jan Girschik, Nils Cryns, Jens Burfeind, Anna Grevé, Christian Doetsch
Fraunhofer UMSICHT, Germany
The VRFB industrial-scale experiment at the University of Padua
Page 50
Massimo Guarnieri, Andrea Trovè, Angelo D’Anzi, Giacomo Marini, Alessandro Sutto, Piergiorgio Alotto
Department of Industrial Engineering, University of Padua, Italy
Proxhima srl, Italy (now StornEn Technologies Inc., USA)

Optimization of the stack design for the vanadium redox flow battery
Page 52
Ravendra Gundlapalli, Sreenivas Jayanti
Department of Chemical Engineering, IIT Madras, India

New organic electroactive molecules for electrolytes of redox flow batteries
Page 54
Thibaut Gutel, Yves Chenavier, Jessica Charoloy, Ines Mannai, Arnaud Morin, and Lionel Dubois
Univ. Grenobles Alpes, France

Presentation and analysis of novel zinc-bromine battery cell performance
Page 56
Bjorn Hage, Jens Noack, Peter Fischer
BH Consulting, Australia
Fraunhofer Institute for Chemical Technology, Germany

Cooling of a power conversion system for redox flow batteries using the electrolyte - a concept study
Page 58
Lothar Heinemann, Jana Schleif, Guido Dieter Hodapp
Trumpf Hüttinger, Germany

The project brine4power – a mega-battery for green energy
Page 60
Alrik Hervieu, Ralf Riekenberg, André Fisse, Timo Di Nardo, Hayo Seeba, Jan grosse Austing
EWE GASSPEICHER GmbH, Germany

Electrochemical impedance of an alkaline organic flow battery
Page 62
Doris Hoffmeyer, Johan Hjelm
Technical University of Denmark, Department of Energy, Conversion and Storage, Denmark

How the policies of China influence the global flow battery market
Page 64
Mianyan-Huang, Jim Stover
VRB Energy Operations (Beijing) Co. Ltd., China
The current status of vanadium redox flow battery development in South Korea: market opportunities and installation sites
Page 66
Jeehyang Huh and Shin Han
H2, Inc., South Korea

Performance of kW class vanadium redox flow batteries incorporating the VGCF™ electrode
Page 68
Irwansyah, Keizo Iseki, Kentaro Watanabe, Gaku Oriji, Yoshinori Abe, Masatoshi Ichikawa, Shuichi Naijo
Institute for Advanced and Core Technology, Showa Denko K.K., Japan

Unique processed large area bipolar plates for redox-flow-batteries
Page 69
Mario Gillmann, Thorsten Dérieth
Centroplast Engineering Plastics GmbH, Germany

Harnessing natural convection in redox flow batteries: proof of concept
Page 69
Md Aslam Ansari, Sanjeev Kumar
Department of Chemical Engineering, Indian Institute of Science, India

Field test experience with 2.5 kW fully welded stacks
Page 70
Tobias Kappels, Thorsten Seipp, Fabian Brünger, Sascha, Berthold, Kai Bothe
Volterion GmbH, Germany

A novel carbonized electrode using phenol for flow battery
Page 72
Yongbeom Kim, Woon Cho, Jooonhyeon Jeon
Dongguk University, Republic of Korea

Voltage propagation within flow battery system and its implications on safety, DC topology and PCS selection
Page 74
Eugene Kizhnerman
Independent Technology Consultant, Electrochemistry and Energy Storage, Canada

Modeling the temperature dependence of the charge and discharge behaviours of a zinc/bromine flow battery
Page 76
Boram Koo, Dongcheul Lee, Chee Burm Shin, Dong Joo, Kim, and Tae Hyuk Kang
Dept. of Chemical Engineering and Division of Energy Systems Research, Ajou University, Republic of Korea
Lotte Chemical, Republic of Korea
Monitoring the state of charge in a VFB with a novel amperometric sensor
Page 78
Isabelle Kroner, Thomas Turek
Clausthal University of Technology; Institute of Chemical and Electrochemical Process Engineering, Germany

Bromine complexation agents in H₂/Br₂ flow battery cathodes: physicochemical processes and their influence on cell operation and cell performance
Page 80
Michael Kuettinger, Ruben Brunetaud, Peter Fischer, Jens Tübke
Applied Electrochemistry, Fraunhofer Institute for Chemical Technology, Germany

Control system for flow batteries
Page 82
Thomas Lueth, Thomas Leibfried
Karlsruhe Institute of Technology (KIT), Germany

Evaluation of the transient characteristics of a redox flow battery with electrolyte flow
Page 84
Toko Mannari, Takafumi Okuda, and Takashi Hikihara
Department of Electrical Engineering, Kyoto University, Japan

Proof of redox flow batteries’ functionality by conducting electrochemical impedance spectroscopy tests
Page 86
Daniel Manschke, Thorsten Seipp, Sascha Berthold
Volterion GmbH, Germany

FleXtore II: 50kW hydrogen bromine flow battery
Page 88
Natalia Mazur, Wiebrand Kout, Joep Lauret, Peter Puttkammer, Raphaël T. van der Velde, Sebastian B. van Drenth, Yohanes Antonius Hugo, Friso D. Sikkema
Elestor b.v., Arnhem, The Netherlands
Witteveen+Bos, The Netherlands
Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, The Netherlands

Vanadium-oxygen hybrid fuel cell: design and performance
Page 90
Chris Menictas, Mandar Risbud, Maria Skyllas-Kazacos and Jens Noack
School of Mechanical and Manufacturing Engineering, UNSW Sydney, Australia
School of Chemical Engineering, UNSW Sydney, Australia
CENELEST, German-Australian Alliance for Electrochemical Technologies for Storage of Renewable Energy, School of Mechanical and Manufacturing Engineering, UNSW Sydney, Australia
Fraunhofer-Institute for Chemical Technology, Germany
A pilot project using a VFB in a multiple-use application
Page 92
Yoshiyuki Nagaoka, Shohei Fukumoto, Yoshihiro Hirata, Riichi Kitano
Sumitomo Electric U.S.A., Inc. (SEUSA), USA
Sumitomo Electric Industries, Ltd (SEI), Japan
Innovation Core SEI, Inc. (ICS), USA

Tuning electrolyte transport with amphoteric PBI-Nafion bilayered membranes
Page 94
Fabio J. Oldenburg, Thomas J. Schmidt, Lorenz Gubler
Electrochemistry Laboratory, Paul Scherrer Institut, Switzerland
Laboratory of Physical Chemistry, ETH Zürich, Switzerland

Development and characterisation of a copper battery system for heat-to-power conversion
Page 96
Pekka Peljo, Sunny Maye
Laboratoire d’Electrochimie Physique et Analytique, École, Polytechnique Fédérale de Lausanne, Switzerland

3D-printed conductive static mixers enable the all vanadium redox flow battery using slurry electrodes
Page 98
Korcan Percin, Alexandra Rommerskirchen, Robert Sengpiel, Youri Gendel, Matthias Wessling
DWI Leibniz-Institute for Interactive Materials, Germany
RWTH Aachen University Chemical Process Engineering, Germany
Technion-Israel Institute of Technology, Israel

Vanadium market fundamentals
Page 100
Terry Perles
TTP Squared, Inc., USA

Vionx Energy: A small company leveraging large company innovations
Page 102
Mike L. Perry
United Technologies Research Center (UTRC), USA

Validated flow distribution analysis by a VFB model linked with optical measurements
Page 104
Eva Prumbohm, Gregor D. Wehinger, Ulrich Kunz and Thomas Turek
Clausthal University of Technology, Institute of Chemical and Electrochemical Process Engineering, Germany
Research Center Energy Storage Technologies, Germany
Numerical study of internal losses and their influence on the performance of a single vanadium redox flow cell
Page 106
M. Pugach, A. Bischi
Skolkovo Institute of Science and Technology, Russia
Moscow Institute of Physics and Technology, Russia

Harvesting low-grade heat using all-vanadium redox flow batteries
Page 108
Danick Reynard, Christopher Dennison, Alberto Battistel, Hubert Girault
Ecole Polytechnique Fédérale de Lausanne, Switzerland

Optimization of a hydrogen/manganese hybrid redox flow battery
Page 110
Javier Rubio-Garcia, Anthony Kucernak, Dong Zhao, Danlei Li, Vladimir Yufit, Nigel Brandon
Department of Chemistry, Imperial College London, UK
Department of Earth Science and Engineering, Imperial; College London, UK

Flow battery integration in printed circuit boards
Page 112
Patrick Ruch, Omar Ibrahim, Ralph Heller, Stephan Paredes, Erik Kjeang, Bruno Michel
IBM Research – Zurich, Switzerland
School of Mechatronic Systems Engineering, Simon Fraser University, Canada

Improving the long term VFB operation by modelling crossover processes and capacity balancing methods
Page 114
Katharina Schafner, Thomas Turek
Clausthal University of Technology, Germany
Research Center Energy Storage Technologies, Germany

Evaluation of grid control for field operation using a 60 MWh vanadium flow battery system
Page 116
Toshikazu Shibata, Shuji Hayashi, Keiji Yano, Takuya Sano, Kazuhiro Fujikawa, Katsuya Yamanishi, Takatoshi Matsumoto, Kunihiko Tada, Akira Inoue and Eiichi Sasano
Sumitomo Electric Industries, Ltd., Japan
Hokkaido Electric Power Co., Inc., Japan

Determining the state-of-charge of symmetric flow batteries using open circuit potentials and self-discharge profiles
Page 118
Kirk Smith, Charles Monroe
University of Oxford, United Kingdom
Flowable carbon suspension electrodes for sulfur-iron redox flow battery
Page 120
Ahmed Sodiq, Lagnamayee Mohapatra, Fathima Fasmin, Sabah Mariyam, Rachid Zaffou and Belabbes Merzougui
College of Science and Engineering, Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar

In situ state of charge and crossover estimation of vanadium redox flow batteries from electrolyte potentials and densities
Page 122
Thorsten Struckmann, Simon Ressel, Peter Kuhn, Claudia Weidlich
Hamburg University of Applied Sciences, Department of Mechanical Engineering and Production, Electrochemistry Laboratory, Germany
Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Spain
DFI – DECHEM Research Institute, Electrochemistry, Germany

Recent progress in vanadium flow battery manufacture, scale-up and demonstration at IMR-CAS
Page 124
Ao Tang, Xiangrong Li, Xinzhuang Fan, Ye Qin, Jianguo Liu and Chuanwei Yan
Institute of Metal Research, Chinese Academy of Sciences, China

Flexible graphite soft felt electrodes for flow batteries
Page 126
Marcin Toda, George Law, John Meahan
Mersen Scotland, UK

NAFION™ membranes for vanadium flow battery
Page 128
Murat Unlu, Michael Raiford, Ruidong Yang
The Chemours Company, USA

High energy density anolyte for aqueous organic redox flow batteries
Page 130
Wei Wang, Aaron Hollas, Vijayakumar Murugesan, Xiaoliang Wei
Pacific Northwest National Laboratory, USA

Understanding transport phenomena in flow-battery separators
Page 132
Adam Z. Weber, Andrew Crothers, Douglas I. Kushner, Robert M. Darling, Michael L. Perry, Andrew M. Herring
Lawrence Berkeley National Laboratory, USA
United Technologies Research Center, USA
Colorado School of Mines, USA
Status and future perspectives of redox flow batteries
Page 134
Zhenguo (Gary) Yang
UniEnergy Technologies, US

Electrochemical investigation on the behaviour of ferroin as candidate redox mediator for aqueous flow batteries
Page 136
Elena Zanzola, Pekka Peljo, Evgeny Smirnov, Hubert Girault
Laboratory of Physical and Analytical Electrochemistry (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Quantitative analysis method of vanadium for the SOC monitoring of a vanadium flow battery
Page 138
Fan-wu Zeng, Shu-ting Wang, Nai-xu Du, Ming-ming Song, Yan-bo Chen
Dalian Bolong New Materials Limited Company, China

Three-dimensional lattice Boltzmann model for a polymer-based redox flow battery
Page 140
Duo Zhang, Antoni Forner-Cuenca, Oluwadamilol O.Taiwo, Vladimir Yufit, Fikile R. Brushett, Nigel P. Brandon, Qiong Cai, Sai Gu
Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, UK
Department of Chemical Engineering, Massachusetts Institute of Technology, USA
Department of Earth Science & Engineering, Faculty of Engineering, Imperial College London, UK

Computational analysis of vanadium flow batteries for centralised storage applications in low-voltage grids
Page 142
Christina Zugschwert, Saskia Dinter, Georg Heyer, Karl-Heinz Pettinger, Tim Rödiger
Technology Center Energy, University of Applied Sciences Landshut, Germany