IFBF 2010 List of Conference Papers

Print ISBN: 978-0-9571055-0-8

Recent advances with vanadium-based redox flow batteries
Professor Maria Skyllas-Kazacos1,2
George Kazacos2
1School of Chemical Sciences and Engineering, University of New South Wales, Australia
2V-Fuel Pty Ltd, Australia

Progress & challenges in the development of flow battery technology
Professor Frank C. Walsh
Electrochemical Engineering Laboratory, Energy Technology Research Group & Research Institute for Industry, School of Engineering Sciences, University of Southampton, UK

The redox flow battery for energy storage and its future development
Professor Huamin Zhang
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China

Polymer-filled expanded graphite: an advanced bipolar plate material for redox flow batteries
Rainer Schmitt1, Alfred Hirschvogel1, Oswin Öttinger1, Mike Römmler2
1SGL Carbon GmbH, Germany
2SGL TECHNIC Inc., SGL Carbon GmbH, Germany

The vanadium supply chain
Terrance T Perles
TTP Squared, Inc., USA

Carbon materials for the negative electrode of the Zn-Ce redox flow cell
G Nikiforidis1, L E A Berlouis1, D Hall2, D Hodgson2
1WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, UK
2Plurion Limited, UK

Redox flow batteries: electric storage systems for renewable energy
Tom Smolinka1, Sascha Berthold2, Martin Dennenmoser1, Christian Dötsch2, Jens Noack3, Jens Tübke3, Matthias Vetter1
1Fraunhofer Institute for Solar Energy Systems ISE, Germany
2Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Germany
3Fraunhofer Institute for Chemical Technology ICT, Germany

The metamorphosis of flow batteries
Rick Winter
Primus Power, USA

Scale-up, operation and manufacture of redox flow batteries
Ian Whyte
Potential Reactions Ltd, UK
Zinc-bromine batteries: reducing the cost of electrical infrastructure
Christopher Winter
Redflow Technologies Ltd, Australia

Practical and commercial issues in the design and manufacture of vanadium flow batteries
Dr Martha Schreiber¹, Martin Harrer¹, Herbert Bucsich¹, Matthias Dragschitz¹, Ernst Steifert¹, Peter Tymcw¹, Adam Whitehead²
¹Cellstrom GmbH, Austria
²CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie GmbH, Austria

Research effort on flow batteries at Pacific Northwest National Laboratory
Jianlu Zhang¹, Liyu Li¹, Soowhan Kim¹, Wei Wang¹, Birgit Schwenzer¹, Baowei Chen¹, Zimin Nie¹, Vijayakumar Murugesan¹, Jun Liu¹, Z. Gary Yang¹, Michael Hickner², Maria Skyllas-Kazacos³
¹Pacific Northwest National Laboratory, USA
²Pennsylvania State University, USA
³University of New South Wales, Australia

Novel design and non-conventional applications for vanadium redox technology
Dr Placido M. Spaziante
Cellennium (Thailand) Co. Ltd., Thailand

The development of redox couples for non-aqueous redox flow batteries
Doo-Yeon Lee, Hee-Young Sun, Seung-Sik Hwang, Joung-Won Park, Seok-Gwang Doo
Battery Group, Emerging Technology Center, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Korea

Vanadium/air redox flow batteries
S.S. Hosseiny¹, M. Saakes² and M. Wessling¹
¹University of Twente, Membrane Science & Technology, The Netherlands
²MAGNETO special anodes B.V., The Netherlands

Zinc bromine flow batteries
Bjorn Jonshagen and Touma B. Issa
ZBB Energy Corporation, Australia

Electric vehicle applications of flow batteries: rapid recharging of EV’s by electrolyte exchange
Sir John Samuel
Re-Fuel Technology Ltd., UK

Non-aqueous vanadium redox flow batteries
Christian Doetsch², Charles Monroe¹, Levi Thompson¹, Aaron Shinkle¹, Alice Sleightholme¹, Jens Tubke³
¹University of Michigan, Dept. of Chemical Engineering, USA
²Fraunhofer Energy Technology (UMSICHT), Germany
³Fraunhofer Chemical Technology (ICT), Germany
Standards for flow battery operation
Guido De Jongh
CEN CENELEC Management Centre, Belgium

Techno-economic modelling of a utility scale redox flow battery system
E. P. L. Roberts, D. P. Scamman
School of Chemical Engineering and Analytical Science, University of Manchester, UK

Economic aspects of grid connected VRB-PV systems in domestic applications
G. Rimpler¹, D. Greger², C. Kimla², M. Stifter³
¹Energenium Renewable Energy Business Development Consulting, Austria
²SIBLIK Elektrik Ges.m.b.H&Co.KG, Austria
³AIT - Austrian Institute of Technology, Energy Department, Austria

The design and application of a flow cell system
Eric A. Lewis
Converteam, UK

Modelling, simulation and validation of PV-VRB systems
M. Stifter¹, J. Kathan¹, F Andren¹, M. Clarke², D. Greger³, G. Rimpler⁴
¹AIT - Austrian Institute of Technology, Austria,
²TU Vienna, Institute for Energy Systems and Thermodynamics, Austria
³SIBLIK Elektrik Ges.m.b.H&Co.KG, Austria
⁴Energenium Renewable Energy Business Development Consulting, Austria

Redox flow batteries for next generation grid design and operation paradigms
Raquel Ferret¹, Anita Gurbani², Ana Aranzabe³, Arrate Marcaide³
¹ZIGOR Research & Development, Spain
²Tekniker, Spain

Legislation and the commercialisation of flow battery systems in Europe
Anthony Price
Swanbarton Limited, UK