2019 List of papers & posters

Development of electrospun sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) composite membrane for hydrogen-bromine flow battery

Page 14
Sanaz Abbasi, Wiebrand Kout, Antoni Forner-Cuenca, Zandrie Borneman, Kitty Nijmeijer
Elestor B.V., Arnhem, The Netherlands
Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, The Netherlands

Low cost zinc-iron rechargeable flow battery with high energy density

Page 16
Alessandra-Accogli, Gabriele-Panzeri, Eugenio-Gibertini, Matteo-Gianellini, Luca-Bertoli, Luca-Magagnin
Surface and Electrochemical Engineering Laboratory (SEELab), Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, Milano, Italy

Evaluation of the mass transport phenomena in flow through electrodes with controlled geometries and arrangements

Page 18
Noemí Aguiló-Aguayo, Thomas Drozdzik, Thomas Bechtold
Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Dornbirn, Austria

Fabrication and characterization of novel anion exchange blend membranes based on tetra aryl phosphonium ionomer for energy conversion and storage applications

Page 20
Muthumeenal Arunachalam, Belabbes Merzougui, Stephen E Creager, Rhett Smith, Rachid Zaffou, Ahmed Sodiq, R. Amin, Fathima Fasmin, P. Ramesh Kumar Petla, Sabah Mariyam
Qatar Environment and Energy Research Institute
Clemson University, USA
College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar

Recent progress in aqueous organic flow batteries

Page 22
Michael J. Aziz
Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA

Characterisation of a 200 kW/400 kWh vanadium redox flow battery

Page 24
D. Bryans, V. Amstutz, H. Girault, L. Berlouis
WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISICLEPA, Lausanne, Switzerland

Surface treatment of carbon felt electrodes and the associated impacts

Page 26
D. Bryans, M. Toda, B. McMillan, L. Berlouis
Mersen UK, Graphite Specialities Research & Development, Holytown, UK
WestCHEM, Department of Pure & Applied Chemistry
University of Strathclyde, Glasgow, UK
Coordination chemistry flow battery
Page 28
Doreen Burchell
Lockheed Martin Energy, Cambridge MA, USA

Optimization of felt compression for high performance VRFB stack
Page 30
Jiří Charvát, Petr Mazúr, Jaromír Pocedič, Jan Dundálek, Jindřich Mrlík, Juraj Kosek
New Technologies – Research Centre, University of West Bohemia, Plzeň, Czech Republic;
University of Chemistry and Technology, Prague, Czech Republic

Development of a flow field for a zinc air redox flow battery
Page 32
Nak Heon Choi, Diego del Olmo, Peter Fischer, Juraj Kosek, Karsten Pinkwart, Jens Tübke
Fraunhofer Institute for Chemical Technology, Pfinztal, Germany
University of Chemistry and Technology Prague, Prague, Czech Republic

EnergyKeeper smart grid: an organic RFB in a practical application
Page 34
Olaf Conrad, Tobias Janoschka
JenaBatteries GmbH, Jena, Germany

Open source battery models for grid applications (open BEA)
Page 36
P. Dotzauer, D. Kucevic, B. Tepe, H. Hesse, J. Ing
Bavarian Center for Applied Energy Research e.V., Germany
Institute for Electrical Energy Storage Technology Technical University of Munich, Munich, Germany

Stepwise potentiometric titration applied to bromine bromide electrolytes
Page 38
Mattia Duranti, Matteo Testi, Edoardo Gino Macchi, Luigi Crema
Center for Materials and Microsystems, Fondazione Bruno Kessler, Trento, Italy
Department of Industrial Engineering, University of Trento, Trento, Italy

Sustainable energy storage market in Iran; current status and recent opportunities for RFB investment
Page 95
Seyyed Saeid Farhadi, Ali Davoodi, Ahad Zabet
Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Iran

Electrochemical studies and performance evaluation of 1-amino anthra quinone based slurry electrodes in
flow cell batteries
Page 40
Fathima Fasmin, Farida H Aidoudi, Aziz Kheireddine, Muthumeenal Arunachalam, Ahmed Sodiq,
Rachid Zaffou, Belabbes A Merzougui
Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar.
College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.
Spatially resolved investigation of electrode compression effects in the vanadium redox flow battery

Page 42

Purna C. Ghimire, Arjun Bhattarai, Rüdiger Schweiss, Günther G. Scherer, Nyunt Wai, Qingyu Yan
Interdisciplinary Graduate School, Nanyang Technological University, Singapore
Energy Research Institute, Nanyang Technological University, Singapore
School of Material Science and Engineering, Nanyang Technological University, Singapore
SGL Carbon GmbH, Meitingen, Germany
Hägglingen, Switzerland

Extruded bipolar plates for redox flow batteries

Page 44

Mario Gillmann, Thorsten Dcrieth, Matthias Schlesies, Thorsten Hickmann
Centroplast Engineering Plastics GmbH, Marsberg, Germany
Eisenhuth GmbH & Co. KG, Osterode am Harz, Germany

Variance of electrochemically active surface area (ECSA)-scaling factors of flow battery cells with internal flow fields

Page 46

Jan Girschik, Nils Cryns, Jens Burfeind, Anna Grevé, Christian Doetsch
Fraunhofer Institute UMSICHT, Oberhausen, Germany

A 40 kW vanadium flow battery as an electrical energy storage system of a multifunctional hybrid compensator

Page 48

Jan Girschik, Michael Joemann, Peter Schwerdt, Anna Grevé, Christian Doetsch
Fraunhofer Institute UMSICHT, Oberhausen, Germany

Zoltek carbon felt electrode materials - an overview

Page 50

Barbara Gönczi, Yasuaki Tanimura, Alan Handermann
Zoltek Zrt, Subsidiary of Toray, Nyergesújfalu, Hungary
Advanced Materials Research Laboratories, Toray Industries, Inc., Otsu, Shiga, Japan
Zoltek Corporation, Subsidiary of Toray, Bridgeton, MO, United States

Bonded graphitized felt electrode-bipolar plate assemblies for vanadium redox flow batteries

Page 52

Gaurav Gupta, Leif Schillert, Barbara Satola, Wiebke Germer, Hermann Block, Burak Caglar, Marco Zobel, Alexander Dyck
DLR Institute of Networked Energy Systems, Oldenburg, Germany
Polyprocess GmbH, Rödelsee, Germany
SGL Carbon GmbH, Meitingen, Germany

Performance enhancing stack geometry concepts

Page 54

Nicholas Gurieff, Chris Menictas, Victoria Timchenko, Maria Skyllas-Kazacos, Jens Noack
School of Mechanical Engineering, UNSW Sydney, Australia
School of Chemical Engineering, UNSW Sydney, Australia
CENELEST, German-Australian Alliance for Electrochemical Technologies for Storage of Renewable Energy, UNSW Sydney, Australia
Fraunhofer-Institute for Chemical Technology, Pfinztal, Germany
100 MWh-scale vanadium flow battery projects in China and forthcoming utility-scale deployment
Page 56
Mianyan Huang, Jim Stover, Bo Hu VRB Energy Inc., Beijing, China

Failure analysis of the membrane electrode assembly in hydrogen-bromine flow batteries after accelerated cycling
Page 58
Yohanes Hugo, Wiebrand Kout, Zandrie Borneman, Kitty Nijmeijer
Elestor B.V., 6812 AR Arnhem, the Netherlands
Membrane Materials and Processes, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, Eindhoven, The Netherlands

Field operating experiences of a vanadium redox flow battery in South Korea
Page 37
Jeehyang Huh, Shin Han
1H2, Inc., Daejeon, South Korea

Design of flow fields for a large area cell of a VRFB
Page 60
Sreenivas Jayanti, Ravendra Gundlapalli
Department of Chemical Engineering, IIT Madras, Chennai, India

State of charge monitoring in vanadium flow battery
Page 62
Hyunjoon Ji, Chujing Liu, Theresa Haisch, Claudia Weidlich
DEHEMA-Forschungsinstitut, Electrochemistry, Frankfurt am Main, Germany

Inverter based compensation of decreasing rotating mass in energy distribution systems
Page 64
Jens Kaufmann
TRUMPF Hüttinger, Freiburg, Germany

Activation of graphite felts using short-term ozone/heat treatment for vanadium redox flow batteries
Page 66
Hansung Kim, Donghyun Kil, Hojin Lee
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea

A highly active carbon-based electrode by intercalating potassium for redox flow battery
Page 68
Youngkwon Kim, Je-Nam Lee, and Ji-Sang Yu
Korea Electronics Technology Institute, Seongnam-si, Korea

Commercial field experience with Avalon’s modular VRFB
Page 70
Andy Klassen
Avalon Battery, Vancouver, Canada
Optimization study of embossed flow field structures on thin and flexible bipolar plates for an all vanadium flow battery

Page 72
Alexander Kubicka, Oliver Zielinski, Thorsten Hickmann, Ulrich Kunz, Michael Lanfranconi, Thorsten Seipp, Thomas Turek
Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
Eisenhuth GmbH & Co. KG, Osterode am Harz, Germany

Improvement of BCA catholyte and cell performance in H2/Br2 flow batteries caused by conscious regulation of bromine sequestering reaction

Page 74
Michael Kuettinger, Raphael Riasse, Camilla Carraro, Peter Fischer, Jens Tuebke
Fraunhofer Institute for Chemical Technology, Pfinztal, Germany

Stability of vanadium flow battery SoC monitoring using electrolyte potential and density

Page 76
Peter Kuhn, Simon Ressel, Thorsten Struckmann
Hamburg University of Applied Sciences, Heinrich Blasius Institute for Physical Technologies, Hamburg, Germany

The effects of ripple current on vanadium redox flow batteries

Page 78
Md Parvez Akter, Yifeng Li, Jie Bao, Maria Skyllas-Kazacos
School of Chemical Engineering, University of New South Wales, Sydney, Australia

Online state of charge monitoring of vanadium flow battery using electrolyte viscosity

Page 80
Xiangrong Li, Ao Tang, Jianguo Liu and Chuanwei Yan
Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China

Optimization of serpentine flow channels in the VRFB

Page 82
Ian Lin, Masahiro Katou, Takashi Kanno
Sumitomo Electric Industries, Ltd., Osaka, Japan

Power density improvement of a flow battery for grid storage through carbon fibre catalyst modification

Page 84
Qinghua Liu, John P. Lemmon, Mingzhe Jiang, Sai Zhang, Xueqi Xing, Ping Miao
National Institute of Clean-and-Low-Carbon Energy, Beijing, China

Optimized auxiliary supply increases the efficiency and flexibility without additional costs

Page 86
Thomas Lüth, David Kienbaum, Thomas Leibfried
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Quality control of flow battery stacks with a fully automated test stand

Page 88
Daniel Manschke, Thorsten Seipp, Tobias Kappels
Volterion GmbH, Dortmund
Copper slurry flow battery for heat-to-power conversion and energy storage
Page 90
Sunny Maye, Hubert Girault and Pekka Peljo
Laboratory of Physical and Analytical Electrochemistry, EPFL Valais-Wallis, Sion, Switzerland

Electrochemical stability of selected quinone and viologen derivatives for an organic electrolyte based redox flow battery
Page 92
Petr Mazur, Jindrich Mrlik, Jaroslav Kvical, Zuzana Hlouskova, Milan Klikar, Filip Bures, Jiri Akrman, Lubos Kubac
University of Chemistry and Technology, Prague, Czech Republic
University of Pardubice, Faculty of Chemical Technology, Institute of Organic Chemistry and Technology, Pardubice, Czech Republic
Centre for Organic Chemistry, Rybitvi, Czech Republic

Non-degrading energy storage infrastructure – the future of energy
Page 94
Scott McGregor
redT energy, London, United Kingdom

Installation and interfacing of a commercial VRB system with PV
Page 96
Joseph Epoupa Mengou, Chiara Gambaro, Laura Meda
Eni SpA - Renewable Energy and Environmental R&D Center, Novara, Italy

A multicomponent diffusion model for organic redox flow battery membranes
Page 98
Gael Mourouga, Caterina Sansone, Fannie Alloin, Cristina Iojoiu, Jurgen O. Schumacher
Institute of Computational Physics (ICP), Zurich
University of Applied Sciences (ZHAW) Winterthur, Switzerland
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, Grenoble, France

Factors leading to improved vanadium flow battery performance with thermally treated carbon paper electrodes
Page 100
Nataliya A. Gvozdik, Keith J. Stevenson
Skolkovo Institute of Science and Technology, Moscow, Russia

Flow battery cost reductions enabled by membrane innovations
Page 102
Gregory Newbloom, Phil Pickett and Olivia Lenz
Membrion, Inc., Seattle, WA, USA

Raw material basis of V-electrolyte: Possibilities and limits of secondary raw materials
Page 104
Jochen Nühlen, Jens Burfeind, Alexander Matthies
Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, Germany
TU Bergakademie Freiberg, Institute for Nonferrous Metallurgy and Purest Materials, Freiberg, Germany

Advanced controls for flow batteries to enable remote areas deployments
Page 106
Brent O’Connor
Redflow, Seventeen Mile Rocks, Queensland, Australia
Assessing the membrane lifetime in vanadium redox flow batteries with an accelerated stress test

Page 108
Fabio J. Oldenburg, Ayoub Ourgaa, Thomas J. Schmidt, Lorenz Gubler
Electrochemistry Laboratory, Paul Scherrer Institut, Villigen
PSI, Switzerland academic guest from: Materials Science and Nano-Engineering Department, Mohammed VI Polytechnic University, Ben Guerir, Morocco
Laboratory of Physical Chemistry, ETH Zürich, Switzerland

Estimating the performance and stability of electrolytes for an aqueous organic redox flow battery: a combined experimental – 0D modelling approach

Page 110
David Pasquier, Quentin Cacciuttolo, Martin Petit
IFP Energies Nouvelles, Solaize, France

Highly conductive graphite based felt electrodes for vanadium redox flow batteries

Page 112
Jessica Pfisterer, Elke Herrmann, Frieder Scheiba, Helmut Ehrenberg
Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe, Germany

Statistical evaluation of measurement within the research of redox flow batteries at lab-scale

Page 116
Jaromír Pocedič, Jiří Vrána, Jan Dundálek, Petr Mazúr
Pinflow energy storage, Prague, Czech Republic
University of West Bohemia, New Technologies – Research Centre, Pilsen, Czech Republic
University of Chemistry and Technology, Prague, Czech Republic

Influence of electrolyte flow rate on the performance of a vanadium redox flow battery in discharge operation at dynamic loading conditions

Page 118
M. Pugach, S. Parsegov, A. Bischi
Skolkovo Institute of Science and Technology, Moscow, Russia
Moscow Institute of Physics and Technology, Moscow, Russia

Hydrogen formation in flow batteries – a parameter for optimization of system and components?

Page 120
Thomas J. Rabbow, David Chittenden, Reyhan Taspinar, Guenter Fafilek
AvCarb Materials Solution LLC, Lowell, MA, USA
TU Wien, Vienna, Austria

Tubular cell designs for all vanadium and vanadium/air flow batteries

Page 122
Simon Ressel, Simon Fischer, Michael Jeske, Thorsten Struckmann
Hamburg University of Applied Sciences, Heinrich Blasius Institute for Physical Technologies, Hamburg, Germany
Uniwell Rohrsysteme GmbH & Co. KG, Ebern, Germany
Fumatech BWT GmbH, Bietigheim-Bissingen, Germany

Purification of copper-contaminated vanadium electrolytes using vanadium redox flow batteries selection

Page 124
Danick Reynard, Heron Vrubel, Christopher Dennison, Alberto Battistel, Hubert Girault
Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
Microgrid system with all-vanadium redox flow battery and wind turbine generator
Page 126
Michael Schäffer, Peter Fischer, Christoph Winter, Jens Noack, Karsten Pinkwart, Jens Tübke
Fraunhofer Institute for Chemical Technology, Pfinztal, Germany

Material, cell and stack characterization – a journey
Page 128
Melanie Schroeder, Udo Martin
J. Schmalz GmbH, Glatten, Germany

Strategies to improve capacity and coulombic efficiency of a high energy density zinc/polyiodide RFB
Page 130
Lukas Siefert, Falko Mahlendorf, Angelika Heinzl
University Duisburg-Essen, Duisburg, Germany

Applications for flow batteries: high power, high cycle VRFB
Page 132
Thorsten Seipp, Sascha Berthold, Tobias Kappels, Kai Bothe, Daniel Manschke, Michael Lanfranconi, Kees van de Kerk
Volterion GmbH, Dortmund, Germany

Performance evaluation of a 60MWh vanadium flow battery system over three years of operation
Page 134
Toshikazu Shibata, Shuji Hayashi, Keiji Yano, Takuya Sano, Kazuhiro Fujikawa, Katsuya Yamanishi, Takatoshi Matsumoto, Kunihiko Tada, Akira Inoue, Eiichi Sasano
Sumitomo Electric Industries, Ltd., Hokkaido Electric Power Co., Inc

Real-time reservoir balancing and leak-free nonaqueous cell design for flow batteries
Page 115
Kirk Smith
University of Oxford, Oxford, United Kingdom

Comparing flow batteries with lithium-ion energy storage for the energy arbitrage application in the Mexican electricity market
Page 136
Javier de la Cruz Soto, Joep Pijpers
National Institute for Electricity and Clean Energy (INEEL), Cuernavaca, Mexico

A calibration-free, temperature-independent, amperometric state-of-charge monitoring method
Page 138
Christian Stolze, Jan Meurer, Martin Hager, Ulrich Schubert
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany.
Center for Energy and Environmental Chemistry Jena (CEEC Jena), Jena, Germany.

A high energy density solid-flow battery
Page 140
Simon Long Yin Tam, Zengyue Wang, Yi-Chun Lu
Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
Simulation analysis of mechanical behaviour and its impact on reliability and electrochemical performance of the vanadium flow battery stack

Page 142
Ao Tang, Jing Xiong, Xiangrong Li, Jiaqiu Liu, Chuanwei Yan
Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China

Thermal modelling of industrialized VRFBs

Page 144
Andrea Trovò, Monica Giomo, Federico Moro, Piergiorgio Alotho, Massimo Guarneri
Department of Industrial Engineering, University of Padua, Padova, Italy

The future of the Russian energy storage market. Trends and opportunities and a forecast to 2025 - 2030

Page 146
Andrei Usenko, Yuri Dobrovolsky, Alexey Kashin
Institute of Problems of Chemical Physics RAS, Chernogolovka, Russia
Inenergy LLC, Moscow, Russia

Hybrid hydrogen-vanadium fuel cell for electrical energy storage

Page 148
Trung Van Nguyen
The University of Kansas, Lawrence, USA

Stabilization of the positive electrolyte for a vanadium flow battery using Fe2(SO4)3 additive at 50 °C

Page 150
Baoguo Wang, Zenghui Li, Yuqun Lin, Lei Wan
Dept of Chemical Engineering, Tsinghua University, Beijing, China

A low-cost and scalable zinc iodine-bromide flow battery for bulk energy storage

Page 152
Zengyue Wang, Simon Long Yin Tam, and Yi-Chun Lu
Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

Open-circuit potential prediction and its applications in modeling and simulation of hydrogen-bromine redox flow batteries

Page 154
Jakub Wlodarczyk, Michael Küttinger, Peter Fischer, Jürgen O. Schumacher
Zurich University of Applied Sciences (ZHAW), Institute of Computational Physics (ICP), Winterthur, Switzerland.
Fraunhofer Institute for Chemical Technology, Pfintztal, Germany

Advancement of NafionTM membrane for vanadium flow battery applications

Page 156
Ruidong Yang, Jan Lenders, Michael Raiford, Robert Moffett
Nafion™ Ion Exchange Materials, The Chemours Company, Wilmington, DE, USA
Nafion™ Ion Exchange Materials, Chemours Belgium BVBA, Mechelen, Belgium

Field experience and advancement of the new generation VRFB

Page 158
Zhenguo “Gary” Yang, Chauncey Sun, David Ridley, Rick Winter
UniEnergy Technologies, Mukilteo, WA, USA
Enhanced aqueous organic redox flow battery by solid boosters

Page 160
Elena Zanzola, S. Gentil, G. Gschwend, D. Reynard, E. Smirnov, C. Dennison, H.H. Girault, P. Peljo
Laboratory of Physical and Analytical Chemistry (LEPA), École Polytechnique Fédérale de Lausanne – EPFL, Sion, Switzerland
Research group of Physical Electrochemistry and Electrochemical Physics, Department of Chemistry and Materials Science, Aalto University, Kemistintie

The development of low cost, intrinsically safe flow batteries to meet the commercial challenge from competing battery technologies

Page 164
Huamin Zhang
Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
Rongke Power Co., Ltd

Crossover-tolerant hydrogen electrocatalysts in hydrogen/bromine redox flow battery

Page 162
David Zitoun, Kobby Saadi
Department of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel