IFBF Papers 2013:

A dual-circuit cerium-vanadium redox flow battery for water electrolysis
Page 8
Véronique Amstutz, Kathryn E. Toghill, Hubert H. Girault
Ecole Polytechnique Fédérale de Lausanne, Switzerland

Insights into hydrogen/bromine flow batteries
Page 10
Kyu Taek Cho, Adam Z. Weber, Vincent Battaglia and Venkat Srinivasan
Environmental Energy Technologies Division,
Lawrence Berkeley National Laboratory, USA

The importance of material selection and exploitation for improving flow battery cost and performances
Page 12
Paula Cojocaru, Luca Merlo, Francesco Triulzi, Marco Apostolo
Solvay Specialty Polymers, Italy

What a redox flow battery really has to cost?
Page 14
Martin Dennenmoser, Sebastian Steininger, Heidrun Reile, Joachim Went, Matthias Vetter
Fraunhofer Institute for Solar Energy Systems ISE, Germany

Plasma activated modification of ion exchange membrane for vanadium crossover removal
Page 16
Francisco Fernández-Carretero, Daniel González-Santamaria, Alberto García-Luis,
Mikel Insausti-Munduate
Tecnalia, Spain

Testing and analysis of vanadium redox flow battery – learning from fuel cell research
Page 18
Peter Fischer, Karsten Pinkwart, Heinz Sander, Erich Gülzow, Stefan Heidemann, Stephan Moeller
Fraunhofer Institute for Chemical Technology (FhG-ICT), Department of Applied Electrochemistry, Germany

Spectroscopic study of VO^{2+}/VO^{2+} electrolytes
Page 20
Xin Gao, Andrea Bourke, Robert P. Lynch,
Martin J. Leahy and D. Noel Buckley
Dept. of Physics and Energy, Charles Parsons Initiative on Energy and Sustainable Environment, Materials and Surface Science Institute, University of Limerick, Ireland

Operating experiences: scalable and modular VRFB energy storage systems under real conditions
Page 22
Stefan Haslinger, Ilja Pawel, Martin Harrer, Adam H. Whitehead
Gildemeister Energy Solutions (Cellstrom GmbH), Austria

Introducing EnerVault’s Engineered Cascade™ System: results from a novel redox flow battery architecture and use of mixed-speciesiron chromium electrolytes
Page 24
Dr. Craig R. Horne and Ronald J. Mosso
EnerVault Corporation, USA
Redox flow lithium-ion battery
Page 23
Qizhao Huang, Feng Pan and Qing Wang
Department of Materials Science and Engineering, Faculty of Engineering, NUSNNI-NanoCore, National University of Singapore, Singapore

Corrosion of a carbon based bipolar plates for vanadium redox flow batteries in presence of chloride
Page 26
Alan Kwan, Carolina Nunes Kirchner, Lidiya Komsyiska, Eva Maria Hammer, Sergio Alfredo Garnica Barragan, Meinert Lewerenz
NEXT ENERGY-EWE-Research Centre for Energy Technology, Germany

Advanced diagnostics for redox flow batteries
Page 28
Qinghua Liu, Jason Clement, Thomas A. Zawodzinski Jr and Matthew M. Mench
BRANE Laboratory, Department of Mechanical, Aerospace and Biomedical Engineering and Department of Chemical and Biomolecular Engineering University of Tennessee, USA

Field tests of the 1 MW x 5 hours vanadium flow battery system with the photovoltaic power system
Page 30
Yoshiyuki Nagaoka, Toshikazu Shibata, Takahiro Kumamoto, Kazunori Kawase, Keiji Yano
Sumitomo Electric Industries, Ltd, Japan

Development of redox flow batteries for mobile applications
Page 32
Fraunhofer Institute for Chemical Technology, Applied Electrochemistry, Germany

A power system operator’s requirements for electrical energy storage
Page 34
Jonathan O’Sullivan, Sustainable Power Systems, EirGrid plc, Ireland

Oxygen electrodes for Alkaline metal–air flow batteries
Page 36
Derek Pletcher, Andrea A. Russell, Stephen W.T. Price, Stephen J. Thompson, Frank C. Walsh, Xiaohong Li, Richard G.A.Wills and Scott F. Gorman
Chemistry, University of Southampton, UK

Carbon components in redox flow batteries – The past and the future from an industrial perspective
Page 38
Dirk Schneider, Rüdiger Schweiss
SGL Carbon GmbH, Germany

Scale-up of vanadium-redox-flow-stacks
Page 40
Thorsten Seipp, Sascha Berthold, Jens Burfeind, Christian Dötsch
Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Germany
Flow battery research to flow battery commercialisation
Page 42
Maria Skyllas-Kazacos
School of Chemical Engineering
University of New South Wales, Australia

Semi-solid flow cells
Page 46
Kyle C. Smith, Zheng Li, Nir Baram, Brandon J. Hopkins, Frank Fan, W. Craig Carter, and Yet-Ming Chiang
Massachusetts Institute of Technology, USA

Redox flow battery development for stationary energy storage applications at Pacific Northwest National Laboratory
Page 48
Vincent Sprenkle, Wei Wang, Qingtao Luo,
Xiaoliang Wei, Bin Li, Zimin Nie, Baowei Chen, Vijayakumar Murugesan, David Reed, Ed Thomsen,
Vilayanur Viswanathan, Brian Koeppel, David Stephenson, Alasdair Crawford
Pacific Northwest National Laboratory, Washington, USA

Redox flow batteries – design by the numbers
Page 50
Lawrence Thaller
USA

Large Scale Batteries - Safety Requirements for European Union and North America
Page 52
Werner Varro
TÜV-SÜD, Germany

Development of manufacture processes of key materials and VRFB stack for energy storage
Page 54
Baoguo Wang, Yongshen Fan, Weinan Guo, Shiqiang Song, Zhijun Jia
R & D Centre of Flow Battery, Tsinghua University, China

Charge imbalance in the Vanadium redox flow battery
Page 56
Adam H. Whitehead, Peter Pokorny, Markus Trampert and Paul Binder
Gildemeister Energy Solutions (Cellstrom GmbH), Austria

The vanadium air redox flow battery project “tubulair±”
Page 45
Wolfgang Winkler
Institute for Energy Systems and Fuel Technology, Hamburg, Germany

Flow battery operating experience: Residential scale
Page 58
Chris Winter
Redflow Limited, Seventeen Mile Rocks, Australia

Chemistry & engineering to make a good vanadium battery better
Page 60
Rick Winter
UniEnergy Technologies, USA
Improving performance through advanced materials for redox flow batteries
Page 64
Thomas A. Zawodzinski, Jr., Che Nan Sun, Zhijiang Tang, Douglas S. Aaron, Jamie Lawton, Michael Bright, Alan Pezeshki, Alexander B. Papandrew, and Matthew Mench
Chemical and Biomolecular Engineering Department, University of Tennessee, USA

Progress on the technology and utility-scale demonstration of vanadium flow battery
Page 62
Huamin Zhang, Xiaoli Wang, Zonghao Liu, Xianfeng Li
Division of energy storage, Dalian Institute of Chemical Physics, Chinese Academy of Science, China

Poster Papers:

Preparation and characterization of cathodes for vanadium-air-redox-flow batteries (VARFB) by electrochemical metal deposition on 3D carbon based electrodes
Page 68
Jan grosse Austing, Eva Maria Hammer, Lidiya Komsiyska
NEXT ENERGY-EWE-Research Centre for Energy Technology, Germany

Operational experiences of using a 500 kWh zinc-bromine flow battery system in an industrial scale wind autoproduction application
Page 66
Raymond Byrne
Centre for Renewable Energy,
Dundalk Institute of Technology, Ireland

Towards bifunctional catalysts for vanadium redox flow batteries: preparation and characterization of Pt nanoparticles
Page 69
C. Gutsche, M. Knipper, H. Borchert, T. Plaggenborg and J. Parisi
Department of Physics, Energy and Semiconductor Research Laboratory, University of Oldenburg, Germany

Redox-flow batteries with robust 3D-structured carbon based electrodes
Page 72
J. Langner, S. Zils, C. Neumann, M. Otter, M. Bron,
J. Melke, K. Nikolowski, H. Ehrenberg, C. Roth
Karlsruher Institut für Technologie (KIT),
Institut für Angewandte Materialien (IAM), Germany

Asymmetric structured and highly soluble redox couples for non aqueous redox flow battery
Page 70
Doo-Yeon Lee, Jung-Won Park, Duk-Jin Oh,
Myung-Jin Lee, Basab Roy, Seok-Gwang Doo
EV/ESS Group, Energy Storage Lab, Energy & Environment R&D Center, Samsung Advanced Institute of Technology, Samsung Electronics Ltd., Korea

Performance of new generation vanadium mixed acid redox flow batteries
Page 73
Liyu Li, Rick Winter, and Gary Z. Yang
UniEnergy Technologies, USA
Occupational safety issues with chloride-based redox flow batteries

Page 74
John McCann and Maria Skyllas-Kazacos
School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Australia

Development of cation exchange membrane for the all-vanadium redox flow battery

Page 75
Yong-Hwan Oh, Cheol-Hwi Ryu, Gab-Jin Hwang
Grad. School, Dep. Green Energy, Hoseo University, Korea

Integration and characterization of gaskets and frame into bipolar plates for vanadium redox flow battery applications

Page 76
Antonio Rodolfo dos Santos, Thorsten Hickmann, Thomas Turek, Ulrich Kunz
Institute of Chemical Process Engineering,
Clausthal University of Technology, Germany

Predictive model for electrolyte flow distribution in flow battery systems

Page 78
Jyothi Latha Tamalapakula and Sreenivas Jayanti
Department of Chemical Engineering, IIT Madras, India

Diffusion of vanadium ion (3+) and proton in hydrated Nafion membrane by molecular dynamic simulation

Page 80
Hwa-Jou Wei, Wen-Song Hwang, Lee-Chung Men Rouh-Chyu Ruaan
Chemistry Division,
Institute of Nuclear Energy Research, Taiwan

Development of ion exchange membranes for high energy efficiency redox flow batteries

Page 82
Masako Yoshioka, Ryohei Iwahara, Akira Nishimoto, Masahiro Yamashita and Masaru Kobayashi
Corporate Research Center, Toyobo Co., Ltd., Japan

Performance optimisation of a regenerative hydrogen vanadium fuel cell

Page 84
V. Yufit, P. Mazur, H. Hewa Dewage and N.P. Brandon
Department of Earth Science and Engineering, Imperial College London, UK