
30 µm thin, highly conductive PBI-based anion exchange 

membrane (AEM) for VRFB applications 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 
Initial testing has successfully demonstrated the application of 

HMT-PMBI, a 30 µm thin and non-fluorinated AEM, as 

suitable for use in VRFB systems. Comparable performance 

has been demonstrated against Nafion XL.  

Outlook 
Further testing and optimization required for a complete and 

comprehensive  assessment : 

• Longer cycling 

• Longer term degradation study 

• Cell optimization 

• Vanadium crossover testing 
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Introduction 
Limited publications of AEM’s compared to PEM’s 

• Quaternized polysulfone (QAPSF) 1 

• Quaternized poly(fluoro ether) 2 

• Polybenzimidizole (PBI) 3 

 

 

 

 

 

 

 

 

 

 

New Material Application 

• Hexamethyl-p-terphenyl poly(benzimidazolium) 4 

• Reported previously for fuel cell and electrolyser 

applications  This work: First application for redox flow 

batteries 

• Non fluorinated  

• Chemically & mechanically stable in acidic media 
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Figure 4: Polarization data comparison of HMT-

PMBI (black line) and Nafion XL (red line). Inset 

image showing 0 – 125 mA/cm2 range 

Figure 3: Self -discharge comparison of HMT-

PMBI and Nafion XL 

Figure 5: Cycling of HMT-PMBI at 80 mA/cm2 

Comparable performance 

to Nafion XL 

 

Similar cell resistance 

Lower self discharge rate 

compared to Nafion XL 

• Lower V crossover due 

to charge repulsion 

(Gibbs – Donnan effect) 

After 50th cycle: 

• CE – 99.58% 

• EE – 51.22% 

• VE – 50.49%  

 

•CE >99% is comparable to 

other reported results 

•Low EE due to non-

optimized electrodes 

 

 

VRFB Membrane 

Requirements 

Low V crossover 

Chemically Stable 

Mechanically Stable 

High conductivity 

Figure 1: General schematic of PEM and AEM operation 

in a VRFB environment 

Figure 2: Structure of HMT-PMBI, as reported by Wright et al. 4 

Figure 6 :Raman analysis of HMT-PMBI before 

and after chemical stability testing – 19 days, RT, 

1M V5+ in 4M H2SO4 electrolyte Figure 7: (A) Samples on Day 0. (B) 

HMT-PMBI on Day 19 (left), compared 

to untreated HMT-PMBI (right).  
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Chemical Stability Testing 
 

PEM AEM 

• Raman analysis indicates no  

surface chemical change after incubation. 

• Coloration of membrane most likely due to V5+ absorption. 

Cell Resistance 

HMT-PMBI  0,484 Ω cm2 

NXL  0,457 Ω cm2 


