# 30 µm thin, highly conductive PBI-based anion exchange membrane (AEM) for VRFB applications

#### B. Shanahan<sup>1</sup>, B. Britton<sup>2</sup>, S. Holdcroft<sup>2</sup>, R. Zengerle<sup>1,3</sup>, S. Thiele<sup>1,3-5</sup> and M. Breitwieser<sup>1,3</sup>

<sup>1</sup>Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany

<sup>2</sup> Department of Chemistry, Simon Fraser University, Burnaby, Canada

<sup>3</sup>Hahn-Schickard, Freiburg, Germany

<sup>4</sup> Forschungszentrum Jülich GmbH, Helmholtz-Institute, Erlangen-Nürnberg for Renewable Energy, (IEK-11), Erlangen, Germany <sup>5</sup> Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany Email: Brian.Shanahan@imtek.uni-freiburg.de

### Introduction

Limited publications of AEM's compared to PEM's

- Quaternized polysulfone (QAPSF)<sup>1</sup> lacksquare
- Quaternized poly(fluoro ether)<sup>2</sup>  $\bullet$
- Polybenzimidizole (PBI) <sup>3</sup>  $\bullet$



• CE – 99.58%

- EE 51.22%
- VE 50.49%

•CE >99% is comparable to other reported results



**VRFB** Membrane Requirements

Low V crossover Chemically Stable Mechanically Stable High conductivity

Figure 1: General schematic of PEM and AEM operation in a VRFB environment

#### **New Material Application**

- Hexamethyl-p-terphenyl poly(benzimidazolium)<sup>4</sup>
- Reported previously for fuel cell and electrolyser applications -> This work: First application for redox flow batteries
- Non fluorinated
- Chemically & mechanically stable in acidic media

30 35 40 45 50 55 60 65 70 75 Time (h) **Figure 5:** Cycling of HMT-PMBI at 80 mA/cm<sup>2</sup>

•Low EE due to nonoptimized electrodes

## **Chemical Stability Testing**



and after chemical stability testing – 19 days, RT, 1M V<sup>5+</sup> in 4M  $H_2SO_4$  electrolyte

Figure 7: (A) Samples on Day 0. (B) HMT-PMBI on Day 19 (left), compared Raman analysis indicates no to untreated HMT-PMBI (right). surface chemical change after incubation.



Figure 2: Structure of HMT-PMBI, as reported by Wright et al.<sup>4</sup>

#### **Electrochemical Analysis**



Lower self discharge rate compared to Nafion XL

Lower V crossover due to charge repulsion (Gibbs – Donnan effect) • Coloration of membrane most likely due to V<sup>5+</sup> absorption.

## Conclusions

Initial testing has successfully demonstrated the application of HMT-PMBI, a 30 µm thin and non-fluorinated AEM, as suitable for use in VRFB systems. Comparable performance has been demonstrated against Nafion XL.

## Outlook

Further testing and optimization required for a complete and comprehensive assessment:

- Longer cycling
- Longer term degradation study
- Cell optimization
- Vanadium crossover testing

### Acknowledgements

Figure 3: Self -discharge comparison of HMT-PMBI and Nafion XL



Figure 4: Polarization data comparison of HMT-PMBI (black line) and Nafion XL (red line). Inset image showing  $0 - 125 \text{ mA/cm}^2$  range



This work was funded by the German Federal Ministry of Education BMBF within the project NEUROFAST (grant number 05K16VFA)

#### References

- J. Ren, Y. Dong, J. Dai, H. Hu, Y. Zhu, X. Teng, Journal of Membrane Science 544 (2017) 186–194. [1]
- M.S. Cha, H.Y. Jeong, H.Y. Shin, S.H. Hong, T.-H. Kim, S.-G. Oh, J.Y. Lee, Y.T. Hong, Journal of Power [2] Sources 363 (2017) 78-86

BURG

FRE

- C. Noh, M. Jung, D. Henkensmeier, S.W. Nam, Y. Kwon, ACS applied materials & interfaces 9 (2017) [3] 36799-36809
- A.G. Wright, J. Fan, B. Britton, T. Weissbach, H.-F. Lee, E.A. Kitching, T.J. Peckham, S. Holdcroft, [4] Energy Environ. Sci. 9 (2016) 2130-2142.

