IFBF papers 2017

Aqueous organic-organometallic RFB with extreme capacity retention at neutral pH

Page 12
Michael J. Aziz, Eugene Beh, Diana DePorcellinis, Rebecca L. Gracia, Kay T. Xia, Roy G. Gordon
Harvard School of Engineering and Applied Sciences, Department of Chemistry and Chemical Biology, Harvard University, Harvard College, Cambridge MA, USA

Reducing electrolyte imbalance in the all vanadium flow battery

Page 14
Arjun Bhattarai, Rüdiger Schweiss, Adam Whitehead, Günther G. Scherer, Nyunt Wai, Purna C. Ghimire,
Tam D. Nguyen, Moe O. Oo, Huey Hoon Hng
School of Material Science and Engineering, Interdisciplinary Graduate School, Energy Research Institute @ Nanyang Technological University, Singapore, SGL Carbon GmbH, Meitingen, Germany, Gildemeister energy storage GmbH, Wiener Neudorf, Austria, TUM CREATE, Singapore

Probing pore-scale mass transfer in redox flow batteries

Page 16
Fikile Brushett, Jarrod Milshtein, Kevin Tenny, John Barton, Javit Drake, Robert Darling
Joint Center for Energy Storage Research, Massachusetts Institute of Technology, The University of Kansas, United Technologies Research Center, East Hartford CT, USA

Characterisation of novel additives for use in the ZnBr$_2$ hybrid flow battery

Page 18
Declan Bryans, Leonard Berlouis, Mark Spicer, Brian McMillan, Alastair Wark
WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow

MoO$_3$ as catalysts for high power vanadium redox flow batteries

Page 20
Liuyue Cao, Maria Skyllas-Kazacos, Da-Wei Wang
School of Chemical Engineering, University of New South Wales, Sydney, Australia

The electrode composition determines the faster half-cell in a vanadium redox flow battery

Page 45
Jochen Friedl, Ulrich Stimming
Newcastle University, Newcastle upon Tyne, UK

Study of in situ locally resolved current density measurements in flow battery single cells and stacks

Page 22
Tobias Gerber, Peter Fischer, Jens Noack, Karsten Pinkwart, Jens Tübke
Fraunhofer Institute for Chemical Technology (ICT), Pfinztal, Germany

Organic RFB with alkaline aqueous-based electrolytes: Kemwatt’s road to market strategy

Page 24
Thibault Godet-Bar
Kemwatt, Rennes, France
Amphoteric ion exchange membranes for vanadium flow batteries with higher transport selectivity and cycle stability

Page 26

Lorenz Gubler, Olga Nibel, Thomas J. Schmidt

Electrochemistry Laboratory, Paul Scherrer Institut, Villigen PSI, Switzerland

The best choice for stationary energy storage

Page 28

Bjorn Hage, Jens Noack

bh-consulting, Australia, Fraunhofer ICT, Germany

Charging rate effect on Fe-V flow battery performance - the role of electrode kinetics

Page 30

Ahmad D. Hammad, Stamatios Souentie, Issam T. Amr, Abdulrahman S. Alsuhaibani, Essa I. Almazroei

Research and Development Center, Saudi Aramco Oil Company, Dhahran, Saudi Arabia

2D modelling of a hydrogen bromine redox flow battery

Page 32

J.W. Haverkort, K. Prasad, F. Sikkema, W. Kout

Delft University of Technology, Delft, Elestor, Utrechtseweg Arnhem, The Netherlands, FH Aachen, Jülich, Germany

Modular and flexible power conversion system optimized for flow batteries

Page 34

Lothar Heinemann, Jens Kaufmann, Sebastian Gruber

Trumpf Hüttinger, Freiburg, Germany

The current status and prospects for vanadium flow batteries in China

Page 36

Mianyan Huang, Eric Finlayson, Hanmin Liu, Jim Stover, Xiaofeng Xie, Billy Wu

Pu Neng, Beijing, Zhangjiakou Wind & Solar Power Energy Demonstration Station Co. Ltd. China State Grid, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China

Dyson School of Design Engineering, Imperial College London, London, UK

High selectivity-conductivity reinforced perfluorosulfonic acid membranes for hydrogen-bromine flow batteries

Page 38

Yohanes Hugo, Wiebrand Kout, Friso Sikkema, Zandrie Borneman, Kitty Nijmeijer

Elestor B.V., Arnhem, Membrane Materials and Processes, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, Eindhoven, The Netherlands

A high performance vanadium redox flow battery incorporating the VGCF™ electrode

Page 40

Irwansyah, Keizo Iseki, Gaku Oriji, Masatoshi Ichikawa, Kenzo Hanawa

Institute for Advanced and Core Technology, Showa Denko K.K., Japan
Validation of KIT’s flow battery model with manufacturers’ data while maintaining confidentiality
Page 42
Sebastian König, Thomas Leibfried, Hannes Barsch, Henrik Buschmann, Holger Fink, Markus Trampert, Martin Harrer

Extra-large bipolar plates for redox flow batteries
Page 46
Lukas Kopietz, Peter Schwerdt, Jan Girschik, Jens Burfeind, Anna Grevé, Christian Doetsch
Fraunhofer UMSICHT, Oberhausen, Germany

Charge strategies for soluble-lead flow batteries
Page 48
Michael Lanfranconi, Gregor Strangemann, Hans-Joachim Lilienhof
Westphalian University of Applied Science, Gelsenkirchen, Germany

New product development of RongKe Power (RKP) vanadium flow battery
Page 50
Xiangkun Ma, Huamin Zhang, Xianfeng Li
Dalian Rongke Power Co., Ltd., Division of Energy Storage, Dalian, Institute of Chemical Physics, Chinese Academy of Science, Dalian, China

The effect of cations on the proton transport of PFSA membranes used in hydrogen-bromine flow batteries: observations and mitigation solutions
Page 52
Natalia Mazur, Yohanes Antonius Hugo, Wiebrand Kout, Friso Sikkema, Ran Elazari, Ronny Costi
Elestor B.V., Arnhem, The Netherlands, ICL Industrial Products R&D, Beer Sheva, Israel

Tackling capacity fading with amphoteric membranes
Page 54
Fabio J. Oldenburg, Thomas J. Schmidt, Lorenz Gubler
Electrochemistry Laboratory, Paul Scherrer Institut, Villigen PSI, Laboratory of Physical Chemistry, ETH Zürich, Switzerland

Heat-to-power conversion with non-aqueous copper redox flow batteries
Page 56
Pekka Peljo, Sunny Maye
École Polytechnique Fédérale de Lausanne, Sion, Switzerland

Vanadium market fundamentals
Page 58
Terry Perles, Alberto Arias
TTP Squared, Inc, Pittsburgh, Arias Resource Capital Management LP, New York, USA

A combined multiscale experimental and modelling approach to studying redox flow batteries
Page 60
Martin Petit, Méloidy Leroy, Philippe Jacquinet, David Pasquier
IFP Energies Nouvelles, Solaize, France
Coordination chemistry flow battery 

Page 62
Steven Reece, Michael Bufano
Lockheed Martin Energy, Cambridge, MA, USA

Novel flow field designs and application in electronic packages

Page 64
Patrick Ruch, Julian Marschewski, Kleber Marques Lisbôa, Lorenz Brenner, Neil Ebejer, Dimos Poulikakos, Bruno Michel IBM Research – Zurich, 8803 Rüschlikon, Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Switzerland

Recent progress in fully welded stack technology

Page 66
Thorsten Seipp, Sascha Berthold, Andreas Albert, Lukas Kopietz Volterion GmbH, Dortmund, Fraunhofer UMSICHT, Oberhausen, Germany

Demonstration of 60MWh vanadium flow battery system for grid control

Page 68

Precipitation inhibitors for supersaturated vanadium electrolytes for the vanadium redox flow battery

Page 70
Maria Skyllas-Kazacos, Chris Menictas, Nadeem Kausar, Asem Mousa School of Chemical Engineering, University of New South Wales, Sydney, Australia

Hybrid polyoxometalate membranes with high conductivity and selectivity

Page 72

A low-cost, non-hazardous all-iron battery for the developing world

Page 74
Michael C Tucker, David Lambelet, Adam Phillips, Mohamed Oueslati, Benjamin Williams, Wu-Chieh Jerry Wang, Adam Z Weber Energy Storage Group, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA

Advanced redox flow battery systems

Page 76
Wei Wang, Xiaoliang Wei, M. Vijaykumar, Bin Li, Zimin Nie, Vincent Sprenkle School of Chemical Engineering, University of New South Wales, Sydney, Australia, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA.
Detection of electrolyte crossover by state of charge monitoring in all-vanadium redox-flow batteries

Page 78
Claudia Weidlich, Lucas Holtz, Klaus-Michael Mangold, Simon Ressel, Thorsten Struckmann
DECHHEMA-Forschungsinstitut, 60486 Frankfurt, HAW Hamburg, Hamburg, Germany

Scale-up of the iron-ferricyanide battery chemistry using WhEST’s flow battery scale-up platform

Page 80
Ian Whyte, David Hodgson
Watt hour Energy Storage Technologies (WhEST), Launceston, Cornwall, UK.

The vanadium flow battery technology and its application in the energy storage field

Page 82
Huamin Zhang*
Professor, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, VP and CTO, Dalian Rongke Power Co., Ltd

A method of evaluating performance and structural design of flow batteries and implications for flow battery applications

Page 84
Qiong Zheng, Huamin Zhang
Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China

Poster Papers:

Aqueous organic flow batteries

Page 86
Eugene Beh, Diana De Porcellinis, Michael Gerhardt, Rafael Gómez-Bombarelli, Marc-Antoni Goulet, Rebecca Gracia, Sergio Granados-Focil, Lauren Hartle, David Kwabi, Kaixiang Lin, Daniel Tabor, Liuchuan Tong, Alvaro Valle, Andrew Wong, Kay Xia, Zhengjin Yang, Alán Aspuru-Guzik, Roy Gordon and Michael Aziz
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, USA
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Rome, Italy
Harvard College, Cambridge, USA
Gustaf H. Carlson Department of Chemistry, Clark University, Worcester, USA
School of Chemistry and Material Science, University of Science and Technology of China, Hefei, P.R. China

Probing the localized behavior of an organic alkaline redox flow battery

Page 88
Mathilde Cazot, Gaël Maranzana, Sophie Didierjean, Jérôme Dillet
Laboratory of Energetics and Theoretical and Applied Mechanics (LEMTA) – Université de Lorraine - CNRS, Vandoeuvre, Kemwatt, Rennes, France

A simple technique for flow frame design in flow battery

Page 90
Yun Young Choi, Jung-II Choi, Ki Jae Kim, Young Kwon Kim
Yonsei University, Seoul, Seoul National University of Science and Technology, Seoul, Korea Electronics Technology Institute, Korea
Thermal activation of electrospun carbon nanofiber electrodes for VO$_2^+$/VO$_2^+$ redox couple

Page 92
Niail Dalton, Maria Al Hajji Safi, Bartek A. Glowacki, D. Noel Buckley, Robert P. Lynch
Department of Physics, and Bernal Institute, University of Limerick, Limerick, Ireland, University of Cambridge, Cambridge, UK, Institute of Power Engineering, Poland, Case Western Reserve University, Cleveland, Ohio, USA

Experimental and mathematical study of zinc electrodeposition from flowing alkaline zincate solutions
Page 94
Jan Dundálek, Ivo Šnajdr, Jiří Vrána, Jaromír Pocedič, Petr Mazúr, Juraj Kosek
1University of Chemistry and Technology, Prague, University of West Bohemia, Pilsen, Czech Republic

Increasing the performance of vanadium flow batteries by flow field design modification
Page 96
Lina Elbers, Ramón Förster, Hans-Joachim Lilienhof
Westphalian University of Applied Sciences, Gelsenkirchen, Germany

Measurement procedures and test conditions for reproducible and transparent redox flow battery research
Page 95
Tobias Greese, Hubert Gasteiger
Bavarian Center for Applied Energy Research, Germany (ZAE Bayern), Department of Chemistry, Technical University Munich, Munich, Germany

Electrochemical behaviour of carbon felt for use as an electrode of redox flow batteries
Page 98
Shinji Inazawa, Yuta Itou, Izumi Yamada, Takeshi Abe
Graduate School of Engineering, Hall of Global Environmental Research, Kyoto University

On the improvement of vanadium electrolyte performance for high thermal stability
Page 100
Donghyeon Kim, Youngho Lee, Joonhyeon Jeon
Dongguk University, Seoul, Republic of Korea

Performance analysis of membranes in zinc-bromine flow battery cells
Page 102
Miae Kim, Woon Cho, Joonhyeon Jeon
Dongguk University, Seoul, Republic of Korea

Design of a cathode electrode with wide reaction surface area and high bromine tolerance
Page 104
Yongbeom Kim, Joonhyeon Jeon
Dongguk University, Seoul, Republic of Korea
Chemo-physical model of a vanadium redox flow cell with peripheral devices
Page 106
Björn Kleinsteible, Aysen Cerci, Dirk Uwe Sauer
SEA RWTH Aachen, Aachen, NRW, Germany, JARA Energy, Jülich, NRW, Germany

Model-based design and optimization of vanadium redox flow batteries
Page 107
Sebastian König, Thomas Leibfried
Karlsruhe Institute of Technology, Karlsruhe, Germany

Interaction of bromine complexation agents and Nafion® membrane in H₂ / Br₂ flow battery
(ex situ measurements) and its influence on cell operation
Page 108
Michael Kuettinger, Mathieu Cappon, Peter Fischer, Karsten Pinkwart, Jens Tuebke
Applied Electrochemistry, Fraunhofer Institute for Chemical Technology, Pfinztal, Germany

Toward high-activity graphite-felt electrodes for VFB
Page 110
Eunsook Lee, Dohun Kim, Jy-young Jyoung
JNTG Co., Ltd. Hwaseong-si, Gyeonggi-do, South Korea

Study of dynamic response of vanadium redox flow batteries for smart grid applications
Page 112
Yifeng Li, Xinan Zhang, Jie Bao, Maria Skyllas-Kazacos
School of Chemical Engineering, University of New South Wales, Sydney, Australia

A novel electrode-bipolar plate assembly for redox flow battery applications
Page 114
Lijun Liu, Chun Yu Ling, Yann Mei Lee, Mei Lin Chng, Ming Han
Clean Energy Research Center, Temasek Polytechnic, Singapore

Behind the thermal stabilizing ability of organic additives for a positive vanadium-based electrolyte: an intensive study
Page 116
Tam D. Nguyen, Adam Whitehead, Günther G. Scherer, Nyunt Wai, Moe O. Oo, Arjun Bhattacharji, Ghimire P. Chandra, Zhichuan J. Xu
Interdisciplinary Graduate School, Nanyang Technological University, Energy Research Institute Nanyang Technological University, TUM-CREATE, School of Material Science and Engineering, Nanyang Technological University, Singapore, Gildemeister energy storage GmbH, Wiener Neudorf, Austria

Suitable reference electrodes for vanadium flow batteries
Page 118
John O'Donnell, Daniela Oboroceanu, Nathan Quill, D. Noel Buckley, Robert P. Lynch
University of Limerick, Limerick, Ireland, Case Western Reserve University, Cleveland, Ohio, USA
Stability of graphite felts in vanadium redox flow battery

Page 124
Jaromir Pocedic, Petr Mazur, Jan Dundalek, Jiri Vrana, Jindra Mrlik, Juraj Kosek
University of West Bohemia, Pilsen, University of Chemistry and Technology Prague, Prague, Czech Republic

Influence of electrode configurations of tubular redox flow cells on performance characteristics

Page 120
Simon Ressel, Simon Fischer, Michael Jeske, Antonio Chica, Thomas Flower, Thorsten Struckmann
Hamburg University of Applied Sciences, Hamburg, Germany, Instituto de Tecnologia Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, València, Spain, Uniwell Rohrsysteme GmbH & Co. KG, Ebern, Germany, Fumatech BWT GmbH, Bietigheim-Bissingen, Germany

Modeling the current distributions in a zinc-bromine flow battery

Page 122
Jaeshin Yi, Boram Koo, Chee Burm Shin, Dong Joo Kim, Dae-Sik Kim, Hyun-Jin Jung, Eun Mi Choi, Tae Hyuk Kang
Dept. of Chemical Engineering and Division of Energy Systems Research, Ajou University, Suwon, Lotte Chemical, Daejeon, Republic of Korea