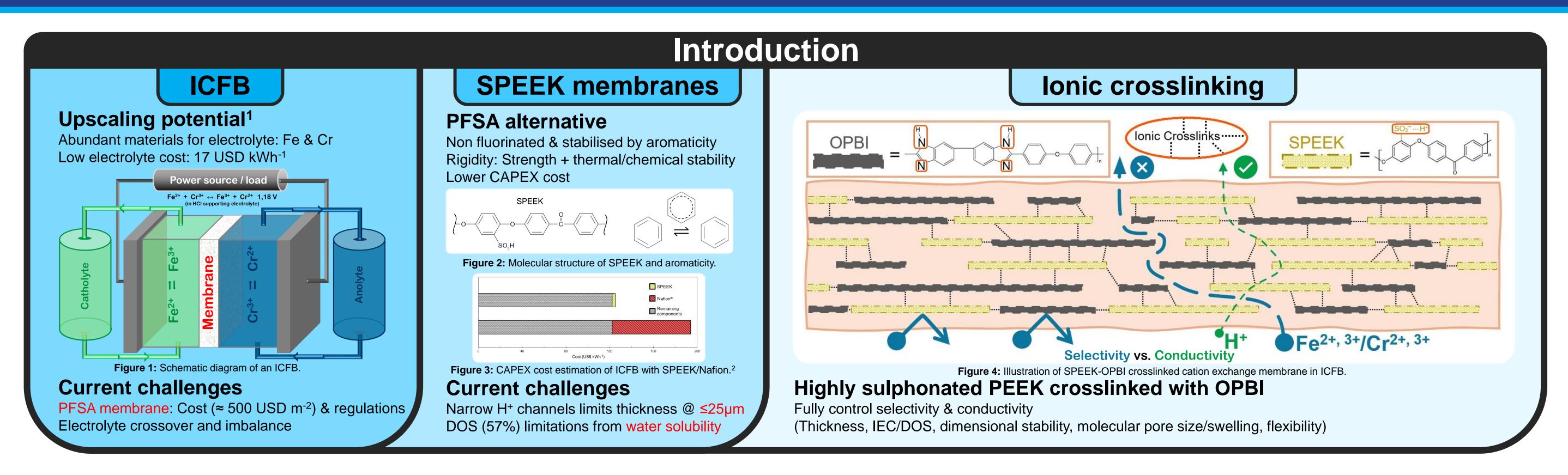
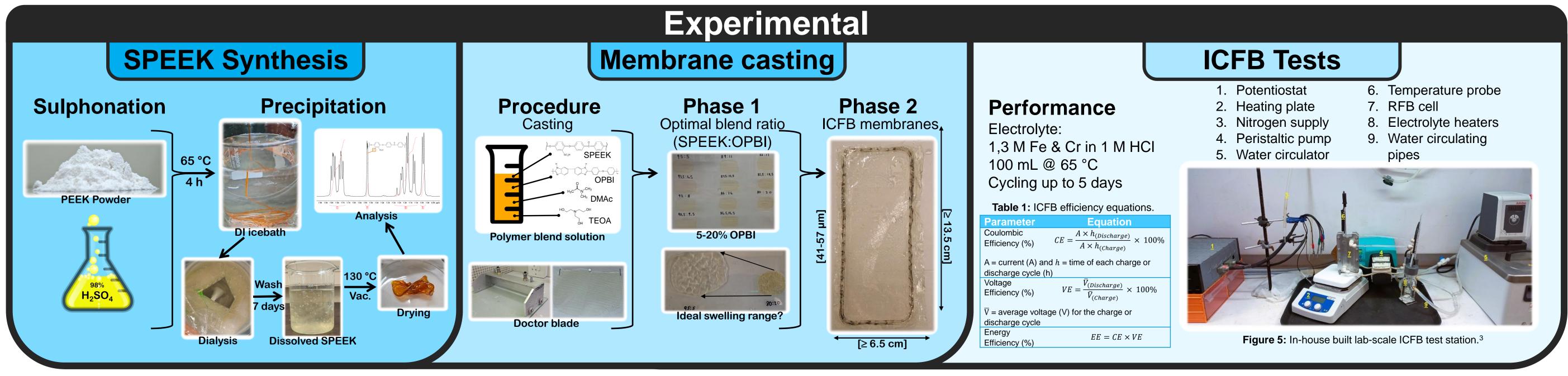
Ionically crosslinked highly sulfonated polyether ether ketone membranes for iron-chromium flow batteries


J.P. du Toit¹, M. Wagner², V. Atanasov³, J. Kerres⁴, H. Cho³, H.M. Krieg^{1*}


¹ Focus Area: Chemical Resource Beneficiation, North-West University, Potchefstroom, South Africa ² IKTS, Fraunhofer, Forchheim, Germany

³ Polymer and Membrane Technology, University of Stuttgart, Stuttgart, Germany

⁴ Polymer Membrane Synthesis, Helmholtz-Institut Erlangen, Erlangen, Germany

*[henning.krieg@nwu.ac.za, T +27-(0)18-299-1669]

	Results	
Phase 1	Phase 2	

Optimal blend ratio

0% OPBI

5% OPBI

Pure highly sulphonated SPEEK-95 (0% OPBI) polymer dissolves in water

Minimum crosslinker for aqueous stability = 5% OPBI

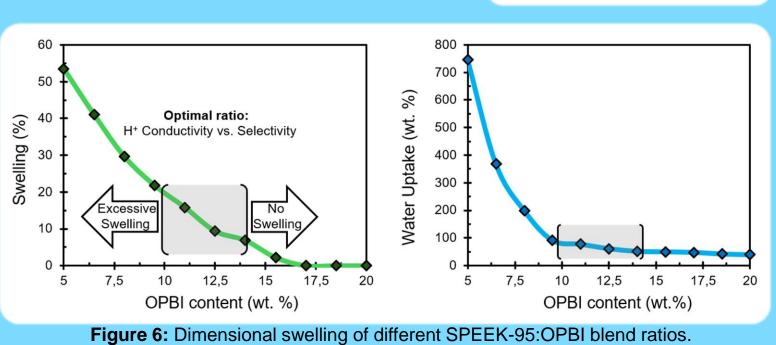
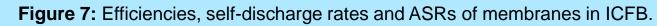


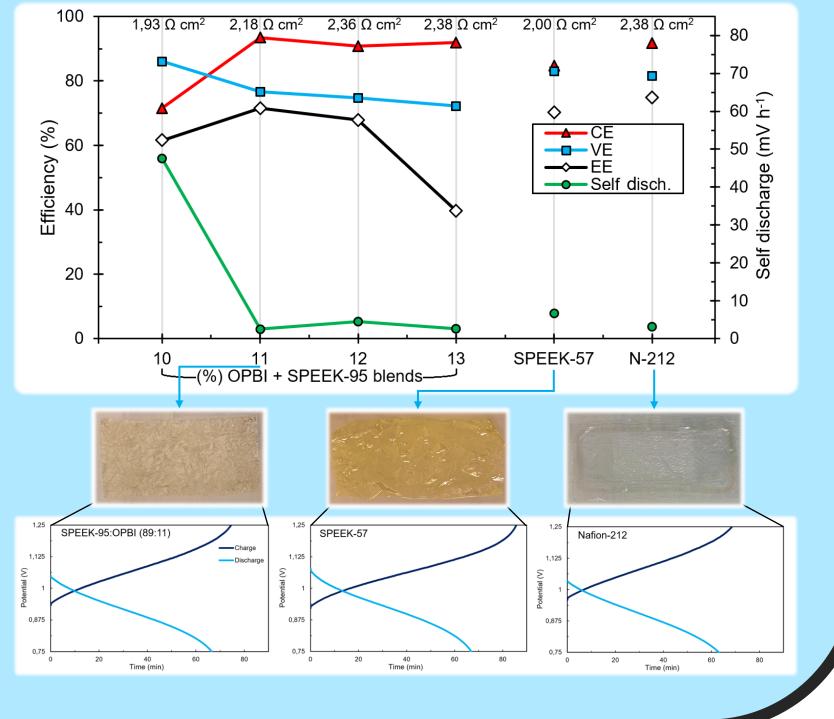
Figure 6. Dimensional swelling of different SPEEK-95.OPBI blend fatios.

Manufacturing and investigation of 11 membranes revealed that blending **10-13% OPBI** with highly sulphonated SPEEK-95 yielded suitable swelling range for aqueous systems

Membrane properties

Table 2: Physical and chemical properties of cation exchange membranes


Membrane	Wet thickness (µm)	Tensile strength (Mpa)	IEC (mmol g ⁻¹)	Water Uptake (%)	Electrolyte Imbalance (%)	Capacity decay (% h ⁻¹)
SPEEK- 95:OPBI (90:10)	57	57	1,57	36,2	80	1,36
SPEEK- 95:OPBI (89:11)	55	60	1,55	26,1	4	1,94
SPEEK- 95:OPBI (88:12)	47	64	1,52	24,4	0	1,92
SPEEK- 95:OPBI (87:13)	41	72	1,40	22,4	0	4,74
SPEEK-57	26	58	1,62	36,3	50	0,70
Nafion-212	58	23	0,98	14,5	35	0,42


Electrolyte imbalance effectively reduced with 11-13% OPBI blends

Tensile strength of SPEEK membranes higher than PFSA

SPEEK membranes obtained significantly higher IEC than Nafion-212, while SPEEK-57 had slightly higher IEC than crosslinked membranes

Membrane efficiencies

Conclusions				
Summary	Challenges			
Ionically crosslinked SPEEK-95:OPBI Cost-effective, chemically stable and fluorine-free membranes synthesised and successfully applied in ICFB for 30 cycles with 100 mL electrolyte	Increasing ASR Despite 100% IEC retention, operational increases in ASR of crosslinked and pure SPEEK membranes were observed			
Ideal swelling degree was found with blends of 10-13% OPBI with SPEEK-95	Reduced swelling during cycling caused elevated capacity decay (especially for crosslinked			

Performance parameters showed an optimal blend ratio of 89:11, obtaining 1.1% higher EE than SPEEK-57 & 3.3% lower than Nafion-212

Using an 89:11 blend in a lab-scale ICFB showed improved selectivity over Nafion benchmark and pure SPEEK, obtaining the highest CE (93.5%) and lowest self discharge (2.53 mV h⁻¹)

Crosslinking of highly sulfonated SPEEK enhanced membrane tensile strength, while enlarging H⁺ transfer channels, allowing the use of thicker membranes and effectively reducing osmotic drag and electrolyte imbalance

membranes)

Future work

Investigate swelling reduction that caused a narrowing of H⁺ transfer channels, likely linked to water retention after washing

Produce a SPEEK-OPBI blend membrane that can perform long-term operation with a rebalance cell equipped ICFB

Acknowledgements

This project received funding from the DFG's Flow Battery Research and Innovation programme (GZ: KE 673/18-1).

References

[1] Y. K. Zeng, T. S. Zhao, L. An, X. L. Zhou, and L. Wei, "A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage," Journal of Power Sources, vol. 300, pp. 438-443, 2015/12/30/ 2015, doi: https://doi.org/10.1016/j.jpowsour.2015.09.100.

[2] C. Sun, Z. Huan, X.-D. Luo, and N. Chen, "A comparative study of Nafion and sulfonated poly(ether ether ketone) membrane performance for iron-chromium redox flow battery," *Ionics*, vol. 25, 23/04 2019, doi: 10.1007/s11581-019-02971-0.

[3] J. P. du Toit and H. M. Krieg, "The feasibility of microporous separators in iron-chromium flow batteries," Journal of Energy Storage, vol. 107, p. 115008, 30/01 2025, doi: https://doi.org/10.1016/j.est.2024.115008

Chemical Resource Beneficiation

