READER project: Applying AORFB to decoupled electrolysis for hydrogen production

<u>Eduardo Sánchez-Díez¹, Anu Jacob¹, Paramaconi Rodriguez^{1,2}</u>

¹CIC Energigune. Parque Tecnológico de Alava, Albert Einstein 48, 01510 Miñano, Álava, Spain ²IKERBASQUE, Basque Foundation for Science. Plaza Euskadi, 5, 48009 Bilbao, Spain esanchez@cicenergigune.com

Introduction

READER project aims to develop a solution based on **precious metalfree catalysts** and stable **anthraquinone redox mediators** to meet the demand for efficient and cost-competitive **alkaline** or **near-neutral pH decoupled electrolyzers**. One of the main outcomes of the project is the development of anthraquinone type redox mediators with **high solubility (>0.5 M)** and excellent stability (>3000 cycles). Advanced spectroelectrochemical techniques, including in situ FTIR and electrochemical mass spectrometry (EC-MS) will be applied for the selection of the best organic materials upon understanding of degradation mechanism.

Project methodolog

CIC energigune

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Traditional vs. READER Decoupled electrolyzer

Traditional electrolyzer with simultaneous H₂ and O₂ production

 H_2 ORM^{Red} ORM^{Red} H_2O Decoupled electrolyzer with production of H_2 and O_2 independently coupled to organic

redox mediator (ORM) oxidation/reduction

	Traditional	Decoupled
SAFETY	Gass crossover. Explosive O ₂ /H ₂ mixtures	Complete separation of O ₂ and H ₂ gases
POWER DENSITY	Governed by sluggish kinetics of OER	HER coupled with fast kinetics organic material 0.8 A cm ⁻² E <2.1 V
MATERIALS	Precious metal catalyst (Pt)	<0.3 mg W ⁻¹ precious metals
рН	Acid (PEMEL) Alkaline (AEMEL)	Neutral to Alkaline

Scientific approach: Anthraquinone study

Symmetry

- Effect on solubility: symmetry, hydrophilic groups
- Effect on Ered: position and electronic nature of substituents
- Effect on stability: position and electronic nature of substituents

Science, 2015, 349, 6255, 1529; Joule 2018, 2, 1894; J. Mater. Chem. A, 2021,9, 26709

• Effect on solubility: acid pka

- Effect on operation conditions: pH dependence
- Effect on stability: side reactions

ACS Energy Lett. 2022, 7, 226; Adv. Energy Mater. 2019, 9, 1900039; Joule 2018, 2, 1894.

EADER READER AQ2

- Effect on solubility: hydrophilic groups
- Effect on Ered: electronic nature of substituents
- Effect on stability: lability of the bonds
- Joule 2018, 2, 1894; Energy Storage Materials 36 (2021) 417.

Acknowledgments

This work is financially supported by the Spanish Government under the READER project. Proyecto READER PID2023-153113OB-I00 financiado por MICIU/AEI/10,13039/501100011033 y por FEDER, UE.

