Theoretical and experimental modelling and simulation of a vanadium flow battery system considering self-discharge

<u>Richard Beyer</u>, Thilo Bocklisch

Chair of Energy Storage Systems, Technische Universität Dresden, Germany

system considering self-discharg

1) Motivation and objectives

- Investigation of self-discharge mechanisms is instrumental in enhancing the efficiency and durability of vanadium flow battery systems (VFBS)
- Improvement of battery management (BMS) and energy management system (EMS) of VFBS
- Utilisation of advanced models for dynamic loss and self-discharge behaviour (particularly during standby)
- Presentation of test system for experimental investigations of a VFBS
- Description of the developed system and self-discharge models for

2) Experimental system

Characteristic	Value		
E _{gross} / E _{@SOC 5-95%}	18 /15 kWh		
P _{DC,max}	5 kW		
n _c	40		
V _{neg} / V _{pos}	420 / 430 l		
I _{max}	100 A		
U _m	48 V		
P _{Pump}	250 W		

- Adapted commercial VFBS (stationary, gridconnected application)
- Additional measuring

- different operation modes
- Investigations and comparison of experimental and theoretical, modelbased simulation results

3) VFBS model approach with standby

Multi-physical model: electrochemical models for estimation of overvoltages and concentrations; empirical models for hydraulic behaviour (pumps) and inverters; equivalent circuit model for shunt-currents [1]

Operating modes:

Self-discharge:

devices for precise model validation and develop experimental based models (Pumps)

4) Experiments and simulation

Experiments: critical analysis and comparison for different working points, start SOC's, durations and flow rates with deep and partial standby

Experiment	SOC ₀ [%]	Duration [h]	sgn(I _{t-1})	Ż [l∕min]	ΔSOC [%]	Losses [kWh]
Partial	5	3	0	5	1,98	0,45 (0,09)
standby	5	3	0	15	2,55	0,97 (0,51)
	5	6	-1	5	2,52	0,69
	10	3	0	5	1,21	0,33 (0,12)
	10	6	+1	5	2,52	0,64(0,24)
	10	U	0		2,64	0,72(0,24)
	10	12	0	5	5,35	1,44 (0,48)
	50	24	0	5	8,52	2,49 (0,96)
	50	24	0	15	8,52	5,14 (3,61)
Deep	5	3	+1	-	1,63	0,33 (0,04)
standby	5	6	-1	-	4,7	0,88 (0,04)
	10	3	+1	-	1,11	0,24 (0,04)
	10	3	-1	-	1,47	0,3 (0,04)
	10 12 +1	_	3,62	0,69 (0,04)		
	10	13	ΤT	' 1 -	4,01	0,76 (0,04)
	50	24	+1	-	4,89	0,92 (0,04)
	73	24	0	-	7,47	1,41 (0,04)
	73	48	0	-	9,43	1,77 (0,04)
	73	63	0	-	11	2,05 (0,04)
	73	96	-1	-	11,82	2,2 (0,04)

 High energy losses after long standby phases in partial state mainly due to pump power and dependent on flow rate

- High energy loss for deep standby only after very long durations (96h)
- Losses are dependent on applied current direction instantly before standby (discharge: sgn(lt-1) = -1; charge: sgn(lt-1) = +1)

1. Operation

- Pumps and inverter active
- $\dot{V} > 0 \& | \neq 0$

2. Partial standby

Inverter standby, pumps running (throttled)
V > 0 & I = 0

3. Deep standby

- Inverter and pumps off *V* = 0 & I = 0
- Mathematical relationship based on chemical equilibrium and mass balance has been derived for estimating the overall gradients (*c*, *n*)

- No reports of effects on self-discharge processes during or after deep standby related to the reservoirs in literature so far
- During long standby periods accumulation of V³⁺ ions in the positive half-cells and V⁴⁺ ions in the negative half-cells can occur
- After recommissioning a mass transport from cells to reservoirs take place and can leads to following self-discharge reactions

<u>Positive reservoir</u>: $VO_2^+ + V^{3+} \rightarrow 2VO^{2+}$ <u>Negative reservoir</u>: $V^{2+} + VO^{2+} + 2H^+ \rightarrow 2V^{3+} + H_2O$

Negative reservoir	Positive reservoir		
$\Delta n_{r,2}^{neg} = -n_{c,4}^{neg}$	$\Delta n_{r,4}^{pos} = 2 \cdot n_{c,3}^{pos} + n_{c,4}^{pos}$		
$\Delta n_{r,3}^{neg} = 2 \cdot n_{c,4}^{neg} + n_{c,3}^{neg}$	$\Delta n_{r,5}^{pos} = -n_{c,3}^{pos}$		
$\Delta c_{r,3}^{neg} = \frac{2 \cdot c_{c,4}^{neg} \cdot V_{hc} + c_{c,3}^{neg} \cdot V_{hc}}{V_r}$	$\Delta c_{r,4}^{pos} = \frac{2 \cdot c_{c,3}^{pos} \cdot V_{hc} + c_{c,4}^{pos} \cdot V_{hc}}{V_r}$		
$\Delta c_{r,2}^{neg} = \frac{-c_{c,4}^{neg} \cdot V_{hc}}{V_r}$	$\Delta c_{r,5}^{pos} = \frac{-c_{c,3}^{pos} \cdot V_{hc}}{V_r}$		

• Change in concentration for the reservoirs and cells with respect to the temporal interval during the process of recommissioning (pre-running),

Simulation based analysis:

- Prediction of voltage losses and SOC drop is necessary to derive recommendations for action for the BMS, particularly flow rate controller
- SOC change of 6 % after 24 h, can be assumed significantly higher if start SOC is higher or cell concentrations reach equimolar state

5) Conclusions and outlook

• Novel contribution of understanding the self-discharge processes of VFBS

can be calculated by utilising the following equations

$$V_{r} \frac{d}{dt} \begin{pmatrix} c_{r,2} \\ c_{r,3} \\ c_{r,4} \\ c_{r,5} \end{pmatrix} = \begin{pmatrix} \dot{V}_{neg} \\ \dot{V}_{neg} \\ \dot{V}_{pos} \\ \dot{V}_{pos} \end{pmatrix} \circ \begin{pmatrix} c_{c,2,out} \\ c_{c,3,out} \\ c_{c,4,out} \\ c_{c,5,out} \end{pmatrix} + \begin{pmatrix} -c_{c,4,out} \\ 2c_{c,4,out} \\ 2c_{c,3,out} \\ -c_{c,3,out} \\ -c_{c,3$$

[1] Beyer, R.; Bocklisch, T.: "Theoretical and Experimental Investigation of Voltage Current Characteristic, Losses and Selfdischarge of a Vanadium Redox Flow Battery System", Proceedings of the International Renewable Energy Storage Conference (IRES 2022), PP. 47–62., Atlantis Press, 2023, doi: 10.2991/978-94-6463-156-2_5

- Standby have a significant impact on the changes of reservoir concentrations and leads to SOC-drops after phases of deep standby
- Simulation data demonstrate qualitative agreement to the measurements
- Next steps: scale up system model to simulate larger systems MW-range
- Development of model predictive flow rate controllers
- Superordinate target is the investigation of a control strategies for VFBS and also within a hybrid energy storage configuration

Contact Richard Beyer richard_beyer@tu-dresden.de +49 351 38661

Thilo Bocklisch de thilo.bocklisch@tu-dresden.de +49 351 46340270

Acknowledgements

This work is based on the results of the research project "BMSmart – Demonstration of the increase in energy efficiency, cost-effectiveness and longevity of large-scale battery storage systems" supported by the Federal Ministry of Economic Affairs and Climate Action (funding code: 03EI4035B).