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Why Organic Reactants?

Phthalic DHAQ DCDHAQ
« No critical materials in supply chain anhydride dyestuft negolyte
. Coal chemical Dyestuff Quino Energy
* Abundant domestic Suppl‘y manufacturers O manufacturers process
= $20-40/KWh energy CAPEX possible O =)

= No hydrogen produced when charging O 4

= Compatible with existing VFB

. . e 8,000,000,000 tons/yr 6,000,000 tons/yr 5,000 tons of dyestuff =1 GWh
hardware with minimal modification y Y Y

Performance of 1,5-DCDHAQ Negolyte vs. FeCN Posolyte in a Commercial 6 kWh System

Long-Term Cycling Utilization and RTE Application Duty Cycles
1,5-DCDHAQ (0.6 M) was tested in a 6-kWh From cycling three times at each power This study tested the 6 KWh battery (ESS on
system demonstrating successful long-term density at room temperature: graphs) under ideal lab conditions using a
cycling vs. the ferro/ferricyanide (FeCN) o . programmable battery cycler. Two widely

redox couple with two cycling protocols:
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._' used application tests published by PNNL
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