SELF-DISCHARGE OF ZINC-BASED HYBRID FLOW BATTERIES

D. Gráf^a, P. Richtr^a, A. Sedlačík^a, J. Pocedič^{b,c}, P. Mazúr^{a,b}

^aUCT Prague, Dept. of Chemical Engineering, Technicka 5, 166 28 Prague, CZE ^bUWB Pilsen, New Technologies - Research Centre, Univerzitni 8, 306 14 Pilsen, CZE ^ePinflow energy storage. s.r.o., Křižovnická 86/6, 110 00 Prague, CZE

Methodology

Analysis

- Gravimetry (Zn pellets) Chelatometric titration (determination of the Zn²⁺ concentration)
- · Capacity retention via galvanostatic charge/discharge
 Morphology and surface changes
- observed by SEM/LSCM

A) Scaled-up 3D visualization of a zinc deposition onto a nickel planar electrode demonstrating uneven and nonhomogeneous growth of the deposited zinc. B) An example of a felt electrode.

Complexation reactions $\begin{array}{l} {\rm Zn^{2+}{+}EBT \rightarrow ZnEBT \ (wine \ red)} \\ {\rm ZnEBT{+}EDTA^{4} \rightarrow Zn(EDTA)^{2-}{+}EBT \ (blue)} \end{array}$

EBT = Eriochrome black T,EDTA = Ethylenediaminetetraacetic

Different SoC (plate vs. felt)

Controlled variables

- Temperature: 20 vs. 40 °C Electrolyte SOC and composition
- Electrolyte flow: 80 ml min⁻¹ vs. static
- Gas purging: N₂ vs. ambient air

Standard conditions

- Planar nickel: 3D graphite felt:
- 40 °C • 80 mA cm⁻² • 100 mA cm⁻²
- 25 mAh cm^{-2} 150.1 mAh cm⁻² • 100 ml
- 250 ml

• 40 °C

$\Delta \mathbf{Q}$ - difference between charged and discharged

apacitance z - stoichiometric number of electrons $n_{Zn} = \frac{\Delta Q}{z \cdot F}$

Aim of work

- · To develop a methodology for studying the self-discharge of deposited zinc deposits in alkaline environments
- To observe the influence of different operating conditions:
- Temperature • Electrolyte SOC and composition
- Presence of oxygen · To reveal the degree of involvement
- of different self-discharge process To compare the effect of self-
- discharge for two types of zinc electrodes:
 - Planar substrate nickel
 - · 3D electrode graphite felt

Results:

Morphology effect (Ni plate)

1005	0			0 N 0 C 0 D	lossy 20 °C rystalline 2 endritic 20	10 °C
93	Ċ.			• N	lossy 40 °C	2
1.2			0	• 0	endritic 40	C C
2			0			
190						0
3	0		0			
94						
						0
92			1			
0						
90 -						
88.0	3	4	6 Time (h)	8	10	12
h morp	holog perio	y aft ods a	er diffe	rent s	elf-di	scharg
		Ra	t 20 and te of sel	l 40 f-disc	°C harge	(µmol
orpholo	ogy	Ra	t 20 and te of sel 20 °C	l 40 f-disc	°C harge	(µmol 10 °C
orpholo	ogy	Ra	t 20 and te of sel 20 °C 23.8	l 40 f-disc	°C harge 4	(µmol Ю °С 29.3
orpholo ossy ystalline	ogy	Ra	t 20 and te of sel 20 °C 23.8 29.1	l 40 f-disc	°C harge 4	(μmol 40 °C 29.3 45.5

	300 (70)	Nickel	Graphite	
	20	60.1	163.0	
	40	121.8	109.0	
	60	110.8	222.4	
	80	262.2	225.1	
	Areal capacity (mAh cm ⁻²)	190.3	150.1	
he pl	anar electrode showed	lower self	f-discharge at low	SoC
ut deg	gradation increased sha	rply at 80%	% SoC. In contrast,	
aphit	te felt improved with	i increasir	ng SoC and ultimate	ely
itperi	formed planar Ni at hig	gh charge le	evels.	

Effect of SoC (crystalline morphology)

SoC (%)	${ m Zn}^{2+}$ concentration	Rate of self-discharge	
	(M)	(µmol h ·1)	
100	0	159.4	
75	0.175	37.6	
50	0.35	42.9	
25	0.525	27.5	
0	0.7	49.4	
Self-discharge v electrolyte prom inconsistent bel dissolution kine	vas highest at 100% SoC, indic notes rapid zinc degradation. I naviour, indicating complex con tics and passivation.	ating that zincate-free ntermediate SoCs showed mpeting effects between	

Atmosphere composition Ni plate

Co-funded by

the European Union

Conclusion

· This study quantifies how zinc self-discharge in zinc-based hybrid flow batteries, especially in alkaline zinc-air hybrid flow batteries is influenced by deposition morphology, temperature, electrolyte composition, and oxygen exposure

• Crystalline and dendritic zinc layers exhibited increased degradation rates, with self-discharge rising from 29.1 to 45.5 µmol h⁴ at 40 °C. Direct air introduction caused up to 1037.9 μ mol h⁻¹ Zn loss in porous electrodes.

• Flow conditions enhanced parasitic reactions, while nitrogen purging suppressed them. Zinc dissolution reached 3.6% after 12 h in 3D felt.

· These results emphasise that targeted control of gas environment, morphology, and electrolyte dynamics is critical to minimising idle-state energy losses.

Acknowledgement:

This publication was supported by the project "The Energy Conversion and Storage", funded as project This protection and supported by the project The Energy Conversion and Storage, indicated as project No. CZ.02.10.10/0/22_008/0004617 by Programme Johannes Amos Comenius, call Excellent Research. This work was supported by TAČR, program THÉTA2, project no. TK02030001 and TS01030093.