Efficient and stable oxygen reduction and oxygen evolution electrodes for alkaline zinc-air flow battery

P. Richtra, P. Mazúra, J. Hnátb, M. Zejmonb, M. Paidarb, J. Pocedičc, P. Hauschwitzd

^aUCT Prague, Dept. of Chemical Engineering, Technicka 5, 166 28 Prague 6 ^bUCT Prague, Dept. of Inorganic Technology, Technicka 5, 166 28 Prague 6 ^cNew Technologies – Research Centre, UWB, Univerzitni 8, 306 14 Pilsen

cHilase Centre, Institute of Physics of the Czech Academy of Sciences, Za Radnici 828, Dolni Brezany

Motivation:

- Zinc- air flow battery (ZAFB) is a promising eco-friendly, safe and cost-effective stationary energy storage technology
- Limitation of technology by dendritic growth of zinc electrode and slushing kinetic of oxygen electrodes reactions

Aims of study:

- Developing stable and efficient electrodes for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR)
 - → OER electrode: nickel-based electrodes, catalytically activated forms of them, **laser structured** electrodes.
- → ORR electrode: preparation series of oxygen reduction electrodes with different content of PTFE (10-80 %)
- Improvement of performance of ZAFB

Figure 1: Scheme of three electrode zinc—air flow battery.

Development of OER electrodes:

Prepared electrodes: nickel foam, catalytically activated nickel foam, expanded nickel, catalytically activated expanded nickel

Process of catalytic activation: Electrochemical assisted precipitation in solution of $(Ni(NO_3)_2 \cdot 6H_2O)$ and $(Co(NO_3)_2 \cdot 6H_2O)$. Followed by calcination and creation of $NiCo_2O_4$ catalytic layer.

Characterization of prepared electrodes: SEM- characterization of surface morphology, EDS- representation of Ni, Co, O

XRD-detection of Ni and nickel cobaltite NiCo₂O₄

EIS and load curves in non-flow arrangement: catalytic activation decrease of polarization resistance

Testing in flow battery: 8 M KOH electrolyte, separated electrodes by membrane, counter reaction H₂ evolution, increased flow speed of electrolyte EIS, load curve measurements (0-100 mA cm⁻², 1.25 mA cm⁻² s⁻¹), constant galvanostatic load (50 mA cm⁻², 6 hours), 25 repetitions,

change of electrolyte after 25 repetitions

Results:

Figure 2: Load curves (0- 100 mA cm⁻², 1.25 mA cm⁻² s⁻¹), 6th cycle. Ni- pristine electrode, NC- cat. electrode, L3- lipss+spikes, L4 lipss electrode. **ASR** area specific resistance (from load curve slope), η overpotential at 50 mA cm⁻².

Figure 5: Scheme of single flow cell for oxygen evolution.

Figure 3: Potential of catalyzed nickel mesh (vs. NHE) in long term experiment.

• Increase of potential of cat. Ni mesh in first experiment (start part), caused by change of electrolyte composition: local acidification and flow through the membrane (won't happen in final battery). In longer term lost of most of

Figure 6: ASR change for old and new electrolyte (from load curves) and overvoltage change (at 50 mA cm⁻²) during OER electrodes experiments for each electrode.

S4700 15.0kV 12.8mm x30 SE(M) After Ni S4700 15.0kV 12.8mm x250 SE(M) S4700 15.0kV 13.8mm x250 SE(M) S4700 15.0kV 12.8mm x250 SE(M)

Elements

from EXD

Co

representation

Figure 4: Before use and post-mortem SEM images of catalytic layer of OER electrode. Cobalt and nickel representation from EDX after long term test

• Slightly cracked cat. layer after experiments.

Figure 7: Load curves (0- 200 mA cm⁻², 1.25 mA cm⁻² s⁻¹), second cycle. Different content of PTFE in catalytic layer (Pt catalyst). **ASR** area specific resistance (from load curve slope), η overpotential at 50 mA cm⁻².

Conclusion:

- Developed catalytically activated OER electrodes: decrease of overvoltage → increase performance of OER
- Laser structured electrodes → promising way to decrease overvoltage
 - → more stable with compared to catalyst.
- Content of PTFE about 60 % wt. in ORR electrodes \rightarrow lower ASR, lower overpotential.
- Further investigation of promising electrodes in zinc-air flow battery

Acknowledgement:

- •This work was supported by TAČR, program THÉTA2, project no. TK02030001.
- •This work was supported from the grant of **Specific university research** grant A1_FCHI_2023_005 and A2_FCHI_2022_033.

