Efficient and stable oxygen reduction and oxygen evolution electrodes for alkaline zinc-air flow battery ### P. Richtra, P. Mazúra, J. Hnátb, M. Zejmonb, M. Paidarb, J. Pocedičc, P. Hauschwitzd ^aUCT Prague, Dept. of Chemical Engineering, Technicka 5, 166 28 Prague 6 ^bUCT Prague, Dept. of Inorganic Technology, Technicka 5, 166 28 Prague 6 ^cNew Technologies – Research Centre, UWB, Univerzitni 8, 306 14 Pilsen cHilase Centre, Institute of Physics of the Czech Academy of Sciences, Za Radnici 828, Dolni Brezany ### **Motivation:** - Zinc- air flow battery (ZAFB) is a promising eco-friendly, safe and cost-effective stationary energy storage technology - Limitation of technology by dendritic growth of zinc electrode and slushing kinetic of oxygen electrodes reactions # Aims of study: - Developing stable and efficient electrodes for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) - → OER electrode: nickel-based electrodes, catalytically activated forms of them, **laser structured** electrodes. - → ORR electrode: preparation series of oxygen reduction electrodes with different content of PTFE (10-80 %) - Improvement of performance of ZAFB Figure 1: Scheme of three electrode zinc—air flow battery. # Development of OER electrodes: Prepared electrodes: nickel foam, catalytically activated nickel foam, expanded nickel, catalytically activated expanded nickel **Process of catalytic activation**: Electrochemical assisted precipitation in solution of $(Ni(NO_3)_2 \cdot 6H_2O)$ and $(Co(NO_3)_2 \cdot 6H_2O)$. Followed by calcination and creation of $NiCo_2O_4$ catalytic layer. Characterization of prepared electrodes: SEM- characterization of surface morphology, EDS- representation of Ni, Co, O **XRD**-detection of Ni and nickel cobaltite NiCo₂O₄ EIS and load curves in non-flow arrangement: catalytic activation decrease of polarization resistance Testing in flow battery: 8 M KOH electrolyte, separated electrodes by membrane, counter reaction H₂ evolution, increased flow speed of electrolyte EIS, load curve measurements (0-100 mA cm⁻², 1.25 mA cm⁻² s⁻¹), constant galvanostatic load (50 mA cm⁻², 6 hours), 25 repetitions, change of electrolyte after 25 repetitions ## **Results:** **Figure 2:** Load curves (0- 100 mA cm⁻², 1.25 mA cm⁻² s⁻¹), 6th cycle. Ni- pristine electrode, NC- cat. electrode, L3- lipss+spikes, L4 lipss electrode. **ASR** area specific resistance (from load curve slope), η overpotential at 50 mA cm⁻². **Figure 5:** Scheme of single flow cell for oxygen evolution. Figure 3: Potential of catalyzed nickel mesh (vs. NHE) in long term experiment. • Increase of potential of cat. Ni mesh in first experiment (start part), caused by change of electrolyte composition: local acidification and flow through the membrane (won't happen in final battery). In longer term lost of most of **Figure 6:** ASR change for old and new electrolyte (from load curves) and overvoltage change (at 50 mA cm⁻²) during OER electrodes experiments for each electrode. # S4700 15.0kV 12.8mm x30 SE(M) After Ni S4700 15.0kV 12.8mm x250 SE(M) S4700 15.0kV 13.8mm x250 SE(M) S4700 15.0kV 12.8mm **Elements** from EXD Co representation **Figure 4:** Before use and post-mortem SEM images of catalytic layer of OER electrode. Cobalt and nickel representation from EDX after long term test • Slightly cracked cat. layer after experiments. Figure 7: Load curves (0- 200 mA cm⁻², 1.25 mA cm⁻² s⁻¹), second cycle. Different content of PTFE in catalytic layer (Pt catalyst). **ASR** area specific resistance (from load curve slope), η overpotential at 50 mA cm⁻². # **Conclusion:** - Developed catalytically activated OER electrodes: decrease of overvoltage → increase performance of OER - Laser structured electrodes → promising way to decrease overvoltage - → more stable with compared to catalyst. - Content of PTFE about 60 % wt. in ORR electrodes \rightarrow lower ASR, lower overpotential. - Further investigation of promising electrodes in zinc-air flow battery # **Acknowledgement:** - •This work was supported by TAČR, program THÉTA2, project no. TK02030001. - •This work was supported from the grant of **Specific university research** grant A1_FCHI_2023_005 and A2_FCHI_2022_033.