

Scale-up of organic redox flow battery

Jiří Charváta, Jaromír Pocedičb, Jiří Vránab, Jan Sedláčeka, Miloš Svoboda^a

- ^a University of West Bohemia, New Technologies Research Centre
- b Pinflow energy storage. s.r.o.

 R_{MN}

Introduction

Scale up of the battery was performer within the the HIGREEW project that aims to build an advanced redox flow battery based on water-soluble low-cost organic electrolyte.

K₄Fe(CN)₆ posilyte SPr₂V anolyte J. Luo et al.. Joule (3). Issue 1. 2019. 149-163

Scale-up issues

- Pressure losses
- Flow distribution
- Shunt current
- Current homogeneity

Electrolyte is ionically

conductive - electrolyte circuit

Sealing concept

Undesired

flow of

current

Desired flow

of current

Shunt currents and pressure losses

Analytical model of shunt current losses and pressure losses

- Optimization of sizes of channels and manifolds based on flow rate
- Optimization of size of active area

CFD model

- Optimization of preliminarily optimized design from analytical model
- Detailed model of flow channel
- Detailed model of flow distributor

	Channel length (mm)		Power loss by shunt currents - 40 cell stack (%)
Organics	300	0.24	0.83
	200	0.35	1.14
	100	0.66	1.79
Vanadium	300	0.42	1.42
	200	0.60	1.94
	100	1.12	3.04

Shunt currents for organics based electrolyte significantly lower thanks to the lower cell voltage and conductivity of the electrolyte.

Analytical model – 40 cell stack 16 14 -Pressure losses -Shunt losses 1200 Specific flow rate / I h⁻¹ m⁻²

Summary

- Analytical model of shunt current losses and pressure losses and CFD model were developed
- Analytical model determination of basic parameters of the stack
- CFD model optimization from analytical model
- Electrochemical parameters are well transferable from laboratory cell to 20 cell stack

Electrochemical properties - comparison

1 and 5 cell setup

	Resistance charging (Ohm cm ²)	Resistance discharging (Ohm cm ²)	Temperature
lab cell-20	3.05	3.15	20°C
1 cell-608	3.65	3.81	20°C
5 cell-608	3.41	3.62	20°C
20 cell-608	2.95	3.09	25°C

