

Forschungszentrum Energiespeichertechnologien

Clausthal University of Technology Characterization of an organic aqueous alkaline all-iron flow battery with a scalable test bench system

Lars Henry Fischer^{1,2}, Luis Fernando Arenas^{1,2}, Torben Lemmermann^{1,2}, Ulrich Kunz^{1,2}, Thomas Turek^{1,2} ¹ Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Clausthal-Zellerfeld, Germany ² Research Center Energy Storage Technologies, Goslar, Germany

Introduction

Iron-based flow batteries are an interesting option for energy storage as they are based on inexpensive and abundant resources [1].

Recent research interest focuses on the stabilization of iron species by incorporating them into organic ligands [2].

New systems are often tested at small laboratory cells measuring a few parameters. A more comprehensive view would be beneficial [3].

Motivation: Need for a scalable test platform for the intensive monitoring of flow batteries and for enabling a faster scale up.

Implementation in the laboratory

Ability to monitor cell and half-cell potentials versus a reversible hydrogen electrode (RHE) in KOH.

•Control by Arduino microcontroller (μ C) and LabVIEW user interface.

No. Component of test Centrifugal pump Electrolyte tank with level sensor on the top and heating device on the rear

- 10 cm² test cell
 - Temperature sensor
- Nitrogen supply
- Battery analyzer

Concept of the test bench

- Level of nitrogen-flooded tanks containing positive and negative electrolyte (PE and NE) is measured by ultrasonic sensors.
- Valves available to drain the cell or to empty the tanks separately. Heating of the electrolytes by heating pads at the tanks.
- Temperature measurement at the cell outlet.
- Centrifugal pumps allow fluid flow without pressure pulses.
- Flow velocity is continuously measured by Hall-effect sensors.

Figure 1: Prototype of the plant and its instrumentation.

Iron to ligand ratio for negative electrolyte

- Positive electrolyte: K₃[Fe(CN)₆] in KOH.
- Negative electrolyte: complex of 0.2 mol I⁻¹ iron and the organic acid DIPSO in 2 mol I⁻¹ KOH.
- Test of different DIPSO to iron ratios in negative electrolyte.

Results

- For a ratio of DIPSO to iron lower than 1.5 not all of the iron is bound as a complex, but reacts to iron hydroxide.
- The lower the ratio of DIPSO the higher the conductivity. See Figure 3.

Figure 2: Schematic diagram showing the pre-pilot plant.

Future work

- The lower the ratio of DIPSO the higher the current density as shown in the LSVs in Figure 4 and the CVs in Figure 5.

Optimum is 1.5 giving the best performance under the ratios where all the iron is bound by the ligand.

Figure 4: Linear Sweep Voltammogramms of NE at $c_{Fe} = 0.2$ mol I⁻¹ and c_{KOH} = 2 mol I⁻¹ and different iron to DIPSO ratios and a scan rate of 20 mV s⁻¹ and a rotational speed of 400 rpm.

Variation of different parameters:

-Current density

-Flow rate

-Temperature

-Electrolyte composition

Evaluation of different membranes and bipolar plates.

Contact

Lars Henry Fischer, M. Sc. Clausthal University of Technology Research Center Energy Storage Technologies Am Stollen 19A E-Mail: fischer@icvt.tu-clausthal.de Phone: +49 5323 72-8121

References

[1] U.S. Geological Survey Mineral, Commodity Summaries (2022),

doi: 10.3133/mcs2022

[2] F. Fenini, E. Drazevic, A. Bentien, J. of Power Sources 540 (2022) 23164 [3] Arenas et al. Current Opinion in Electrochemistry (2019) 16:117–126

Acknowledgement

The authors thank for financial support of the Federal Ministry for Economic Affairs and Climate Action in Germany for the project Metallo FlowBat KK5156701 SN0.

ZIM

Innovationsprogramm

Zentrales

Mittelstand

