IFBF 2019 List of Conference Papers

Print ISBN: 978-0-9571055-9-1 Digital ISBN: 978-1-9164518-9-6

Development of electrospun sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) composite membrane for hydrogen-bromine flow battery

Page 14

Sanaz Abbasi, Wiebrand Kout, Antoni Forner-Cuenca, Zandrie Borneman, Kitty Nijmeijer *Elestor B.V., The Netherlands*

Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, The Netherlands

Low cost zinc - iron rechargeable flow battery with high energy density

Page 16

Alessandra-Accogli, Gabriele-Panzeri, Eugenio-Gibertini, Matteo-Gianellini, Luca-Bertoli, Luca-Magagnin

Surface and Electrochemical Engineering Laboratory (SEELab), Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, Italy

Evaluation of the mass transport phenomena in flow through electrodes with controlled geometries and arrangements

Page 18

Noemí Aguiló-Aguayo, Thomas Drozdzik, Thomas Bechtold Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Austria

Fabrication and characterization of novel anion exchange blend membranes based on tetra aryl phosphonium ionomer for energy conversion and storage applications

Page 20

Muthumeenal Arunachalam, Belabbes Merzougui, Stephen E Creager, Rhett Smith, Rachid Zaffou, Ahmed Sodiq, R. Amin, Fathima Fasmin, P. Ramesh Kumar Petla, Sabah Mariyam Qatar Environment and Energy Research Institute, Qatar

Clemson University, USA

College of Science and Engineering, Hamad Bin Khalifa University, Qatar

Recent progress in aqueous organic flow batteries

Page 22

Michael J. Aziz

Harvard School of Engineering and Applied Sciences, USA

Characterisation of a 200 kW/400 kWh vanadium redox flow battery

Page 24

D. Bryans, V. Amstutz, H. Girault, L. Berlouis

WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, UK Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISICLEPA, Switzerland

Surface treatment of carbon felt electrodes and the associated impacts

Page 26

D. Bryans, M. Toda, B. McMillan, L. Berlouis Mersen UK, Graphite Specialities Research & Development, UK WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, UK

Coordination chemistry flow battery

Page 28
Doreen Burchell
Lockheed Martin Energy, USA

Optimization of felt compression for high performance VRFB stack

Page 30

Jiří Charvát, Petr Mazúr, Jaromír Pocedič, Jan Dundálek, Jindřich Mrlík, Juraj Kosek New Technologies – Research Centre, University of West Bohemia, Czech Republic University of Chemistry and Technology, Czech Republic

Development of a flow field for a zinc air redox flow battery

Page 32

Nak Heon Choi, Diego del Olmo, Peter Fischer, Juraj Kosek, Karsten Pinkwart, Jens Tübke Fraunhofer Institute for Chemical Technology, Germany University of Chemistry and Technology Prague, Czech Republic

EnergyKeeper smart grid: an organic RFB in a practical application

Page 34

Olaf Conrad, Tobias Janoschka JenaBatteries GmbH, Germany

Open source battery models for grid applications (open BEA)

Page 36

P. Dotzauer, D. Kucevic, B. Tepe, H. Hesse, J. Ing Bavarian Center for Applied Energy Research e.V., Germany Institute for Electrical Energy Storage Technology, Technical University of Munich, Germany

Field operating experiences of a vanadium redox flow battery in South Korea

Page 37

Jeehyang Huh, Shin Han H2, Inc., South Korea

Stepwise potentiometric titration applied to bromine bromide electrolytes

Page 38

Mattia Duranti, Matteo Testi, Edoardo Gino Macchi, Luigi Crema Center for Materials and Microsystems, Fondazione Bruno Kessler, Italy Department of Industrial Engineering, University of Trento, Italy

Electrochemical studies and performance evaluation of 1- amino anthra quinone based slurry electrodes in flow cell batteries

Page 40

Fathima Fasmin, Farida H Aidoudi, Aziz Kheireddine, Muthumeenal Arunachalam, Ahmed Sodig,

Rachid Zaffou, Belabbes A Merzougui

Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar

College of Science and Engineering, Hamad Bin Khalifa University, Qatar

Investigation of electrolyte distribution in flow batteries by means of pH tracing

Page 42

Purna C. Ghimire, Arjun Bhattarai, Rüdiger Schweiss, Günther G. Scherer, Nyunt Wai, Qingyu Yan

Interdisciplinary Graduate School, Nanyang Technological University, Singapore

Energy Research Institute, Nanyang Technological University, Singapore

Vflowtech Pte. Ltd, Singapore

SGL Carbon GmbH, Germany

5607 Hägglingen, Switzerland

School of Material Science and Engineering, Nanyang Technological University, Singapore

Extruded bipolar plates for redox flow batteries

Page 44

Mario Gillmann, Thorsten Derieth, Matthias Schlesies, Thorsten Hickmann Centroplast Engineering Plastics GmbH, Germany Eisenhuth GmbH & Co. KG, Germany

Variance of electrochemically active surface area (ECSA)-scaling factors of flow battery cells with internal flow fields

Page 46

Jan Girschik, Nils Cryns, Jens Burfeind, Anna Grevé, Christian Doetsch Fraunhofer Institute UMSICHT, Germany

A 40 kW vanadium flow battery as an electrical energy storage system of a multifunctional hybrid

compensator

Page 48

Jan Girschik, Michael Joemann, Peter Schwerdt, Anna Grevé, Christian Doetsch Fraunhofer Institute UMSICHT, Germany

Zoltek carbon felt electrode materials - an overview

Page 50

Barbara Gönczi, Yasuaki Tanimura, Alan Handermann
Zoltek Zrt, Subsidiary of Toray, Hungary
Advanced Materials Research Laboratories, Toray Industries, Inc., Japan
Zoltek Corporation, Subsidiary of Toray, USA

Bonded graphitized felt electrode-bipolar plate assemblies for vanadium redox flow batteries

Page 52

Gaurav Gupta, Leif Schillert, Barbara Satola, Wiebke Germer, Hermann Block, Burak Caglar, Marco Zobel, Alexander Dyck

DLR Institute of Networked Energy Systems, Germany

Polyprocess GmbH, Germany

SGL Carbon GmbH, Germany

Performance enhancing stack geometry concepts

Page 54

Nicholas Gurieff, Chris Menictas, Victoria Timchenko, Maria Skyllas-Kazacos, Jens Noack School of Mechanical Engineering, UNSW Sydney, Australia School of Chemical Engineering, UNSW Sydney, Australia CENELEST, German-Australian Alliance for Electrochemical Technologies for Storage of Renewable Energy, UNSW Sydney, Australia

Fraunhofer-Institute for Chemical Technology, Germany

100 MWh-scale vanadium flow battery projects in China and forthcoming utility-scale deployment

Page 56 Mianyan Huang, Jim Stover, Bo Hu VRB Energy Inc., China

Failure analysis of the membrane electrode assembly in hydrogen-bromine flow batteries after accelerated cycling

Page 58

Yohanes Hugo, Wiebrand Kout, Zandrie Borneman, Kitty Nijmeijer *Elestor B.V., The Netherlands*

Membrane Materials and Processes, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, The Netherlands

Design of flow fields for a large area cell of a VRFB

Page 60

Sreenivas Jayanti, Ravendra Gundlapalli
Department of Chemical Engineering, IIT Madras, India

State of charge monitoring in vanadium flow battery

Page 62

Hyunjoon Ji, Chujing Liu, Theresa Haisch, Claudia Weidlich *DECHEMA-Forschungsinstitut, Electrochemistry, Germany*

Inverter based compensation of decreasing rotating mass in energy distribution systems

Page 64

Jens Kaufmann

TRUMPF Hüttinger, Germany

Activation of graphite felts using short-term ozone/heat treatment for vanadium redox flow batteries

Page 66

Hansung Kim, Donghyun Kil, Hojin Lee

Department of Chemical and Biomolecular Engineering, Yonsei University, Korea

A highly active carbon-based electrode by intercalating potassium for redox flow battery

Page 68

Youngkwon Kim, Je-Nam Lee, and Ji-Sang Yu

Korea Electronics Technology Institute, Korea

The current status of battery energy storage systems in Korea: policies, markets and standards

Page 70

Yu-Tack Kim, Sang A Lee, Min-Young Cho, Eohyun Yoo, Sooahn Jung, Dongmin Cha, Jaeseung Yoo

Battery R&D Association of Korea, South Korea

Commercial field experience with Avalon's modular VRFB

Page 74

Andy Klassen

Avalon Battery, Canada

Optimization study of embossed flow field structures on thin and flexible bipolar plates for an all vanadium flow battery

Page 76

Alexander Kubicka, Oliver Zielinski, Thorsten Hickmann, Ulrich Kunz, Michael Lanfranconi, Thorsten Seipp, Thomas Turek

Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Germany

Eisenhuth GmbH & Co. KG, Germany

Improvement of BCA catholyte and cell performance in H₂/Br₂ flow batteries caused by conscious regulation of bromine sequestering reaction

Page 78

Michael Kuettinger, Raphael Riasse, Camilla Carraro, Peter Fischer, Jens Tuebke Fraunhofer Institute for Chemical Technology, Germany

Stability of vanadium flow battery SoC monitoring using electrolyte potential and density Page 80

Peter Kuhn, Simon Ressel, Thorsten Struckmann

Hamburg University of Applied Sciences, Heinrich Blasius Institute for Physical Technologies, Germany

The effects of ripple current on vanadium redox flow batteries

Page 82

Md Parvez Akter, Yifeng Li, Jie Bao, Maria Skyllas-Kazacos

School of Chemical Engineering, University of New South Wales, Australia

Online state of charge monitoring of vanadium flow battery using electrolyte viscosity

Page 84

Xiangrong Li, Ao Tang, Jianguo Liu and Chuanwei Yan Institute of Metal Research, Chinese Academy of Sciences, China

Optimization of serpentine flow channels in the VRFB

Page 86

lan Lin, Masahiro Katou, Takashi Kanno Sumitomo Electric Industries, Ltd., Japan

Power density improvement of a flow battery for grid storage through carbon fibre catalyst modification

Page 88

Qinghua Liu, John P. Lemmon, Mingzhe Jiang, Sai Zhang, Xueqi Xing, Ping Miao *National Institute of Clean-and-Low-Carbon Energy, China*

Optimized auxiliary supply increases the efficiency and flexibility without additional costs

Page 90

Thomas Lüth, David Kienbaum, Thomas Leibfried Karlsruhe Institute of Technology (KIT), Germany

Quality control of flow battery stacks with a fully automated test stand

Page 92

Daniel Manschke, Thorsten Seipp, Tobias Kappels *Volterion GmbH, Germany*

Copper slurry flow battery for heat-to-power conversion and energy storage

Page 94

Sunny Maye, Hubert Girault and Pekka Peljo

Laboratory of Physical and Analytical Electrochemistry, EPFL Valais-Wallis, Switzerland

Electrochemical stability of selected quinone and viologen derivatives for an organic electrolyte based redox flow battery

Page 96

Petr Mazur, Jindrich Mrlik, Jaroslav Kvical, Zuzana Hlouskova, Milan Klikar, Filip Bures, Jiri Akrman, Lubos Kubac

University of Chemistry and Technology, Czech Republic

University of Pardubice, Faculty of Chemical Technology, Institute of Organic Chemistry and Technology, Czech Republic

Centre for Organic Chemistry, Czech Republic

Non-degrading energy storage infrastructure – the future of energy

Page 98 Scott McGregor

redT energy, UK

Sustainable energy storage market in Iran; current status and recent opportunities for RFB investment

Page 99

Seyyed Saeid Farhadi, Ali Davoodi, Ahad Zabett

Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Iran

Installation and interfacing of a commercial VRB system with PV

Page 100

Joseph Epoupa Mengou, Chiara Gambaro, Laura Meda

Eni SpA - Renewable Energy and Environmental R&D Center, Italy

A multicomponent diffusion model for organic redox flow battery membranes

Page 102

Gael Mourouga, Caterina Sansone, Fannie Alloin, Cristina Iojoiu, Jurgen O. Schumacher *Institute of Computational Physics (ICP), Zurich*

University of Applied Sciences (ZHAW) Winterthur, Switzerland

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, France

Factors leading to improved vanadium flow battery performance with thermally treated carbon paper

electrodes

Page 104

Nataliya A. Gvozdik, Keith J. Stevenson

Skolkovo Institute of Science and Technology, Russia

Flow battery cost reductions enabled by membrane innovations

Page 106

Gregory Newbloom, Phil Pickett and Olivia Lenz

Membrion, Inc., USA

Raw material basis of V-electrolyte: Possibilities and limits of secondary raw materials

Page 108

Jochen Nühlen, Jens Burfeind, Alexander Matthies

Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Germany TU Bergakademie Freiberg, Institute for Nonferrous Metallurgy and Purest Materials, Germany

Advanced controls for flow batteries to enable remote areas deployments

Page 110

Brent O'Connor

Redflow, Australia

Assessing the membrane lifetime in vanadium redox flow batteries with an accelerated stress test

Page 112

Fabio J. Oldenburg, Ayoub Ourgaa, Thomas J. Schmidt, Lorenz Gubler

Electrochemistry Laboratory, Paul Scherrer Institut, Switzerland

Materials Science and Nano-Engineering Department, Mohammed VI Polytechnic University, Morocco

Laboratory of Physical Chemistry, ETH Zürich, Switzerland

Estimating the performance and stability of electrolytes for an aqueous organic redox flow battery: a combined experimental – 0D modelling approach

Page 114

David Pasquier, Quentin Cacciuttolo, Martin Petit

IFP Energies Nouvelles, France

Highly conductive graphite based felt electrodes for vanadium redox flow batteries

Page 116

Jessica Pfisterer, Elke Herrmann, Frieder Scheiba, Helmut Ehrenberg
Institute for Applied Materials, Karlsruhe Institute of Technology, Germany

Real-time reservoir balancing and leak-free nonaqueous cell design for flow batteries

Page 119

Kirk Smith

University of Oxford, UK

Statistical evaluation of measurement within the research of redox flow batteries at labscale

Page 120

Jaromír Pocedič, Jiří Vrána, Jan Dundálek, Petr Mazúr

Pinflow energy storage, Czech Republic

University of West Bohemia, New Technologies – Research Centre, Czech Republic

University of Chemistry and Technology, Czech Republic

Influence of electrolyte flow rate on the performance of a vanadium redox flow battery in discharge operation at dynamic loading conditions

Page 122

M. Pugach, S. Parsegov, A. Bischi

Skolkovo Institute of Science and Technology, Russia

Moscow Institute of Physics and Technology, Russia

Hydrogen formation in flow batteries – a parameter for optimization of system and components?

Page 124

Thomas J. Rabbow, David Chittenden, Reyhan Taspinar, Guenter Fafilek

AvCarb Materials Solution LLC, USA

TU Wien, Austria

Tubular cell designs for all vanadium and vanadium/air flow batteries

Page 126

Simon Ressel, Simon Fischer, Michael Jeske, Thorsten Struckmann

Hamburg University of Applied Sciences, Heinrich Blasius Institute for Physical Technologies, Germany

Uniwell Rohrsysteme GmbH & Co. KG, Germany

Fumatech BWT GmbH, Germany

Purification of copper-contaminated vanadium electrolytes using vanadium redox flow batteries selection

Page 128

Danick Reynard, Heron Vrubel, Christopher Dennison, Alberto Battistel, Hubert Girault *Ecole Polytechnique Fédérale de Lausanne, Switzerland*

Microgrid system with all-vanadium redox flow battery and wind turbine generator

Page 130

Michael Schäffer, Peter Fischer, Christoph Winter, Jens Noack, Karsten Pinkwart, Jens Tübke Fraunhofer Institute for Chemical Technology, Germany

Material, cell and stack characterization – a journey

Page 132

Melanie Schroeder, Udo Martin

J. Schmalz GmbH, Germany

Strategies to improve capacity and coulombic efficiency of a high energy density zinc/polyiodide RFB

Page 134

Lukas Siefert, Falko Mahlendorf, Angelika Heinzel

University Duisburg-Essen, Germany

Applications for flow batteries: high power, high cycle VRFB

Page 136

Thorsten Seipp, Sascha Berthold, Tobias Kappels, Kai Bothe, Daniel Manschke, Michael Lanfranconi, Kees van de Kerk

Volterion GmbH, Germany

Performance evaluation of a 60MWh vanadium flow battery system over three years of operation

Page 138

Toshikazu Shibata, Shuji Hayashi, Keiji Yano, Takuya Sano, Kazuhiro Fujikawa, Katsuya Yamanishi, Takatoshi Matsumoto, Kunihiko Tada, Akira Inoue, Eiichi Sasano Sumitomo Electric Industries, Ltd., Japan

Hokkaido Electric Power Co., Inc., Japan

Comparing flow batteries with lithium-ion energy storage for the energy arbitrage application in the Mexican electricity market

Page 140

Javier de la Cruz Soto, Joep Pijpers

National Institute for Electricity and Clean Energy (INEEL), Mexico

A calibration-free, temperature-independent, amperometric state-of-charge monitoring method

Page 142

Christian Stolze, Jan Meurer, Martin Hager, Ulrich Schubert

Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Germany

Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Germany

A high energy density solid-flow battery

Page 144

Simon Long Yin Tam, Zengyue Wang, Yi-Chun Lu

Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong

Simulation analysis of mechanical behaviour and its impact on reliability and electrochemical performance of the vanadium flow battery stack

Page 146

Ao Tang, Jing Xiong, Xiangrong Li, Jianguo Liu, Chuanwei Yan Institute of Metal Research, Chinese Academy of Sciences, China

Thermal modelling of industrialized VRFBs

Page 148

Andrea Trovò, Monica Giomo, Federico Moro, Piergiorgio Alotto, Massimo Guarnieri Department of Industrial Engineering, University of Padua, Italy

The future of the Russian energy storage market - trends and opportunities and a forecast to 2025 - 2030

Page 150

Andrei Usenko, Yuri Dobrovolsky, Alexey Kashin Institute of Problems of Chemical Physics RAS, Russia Inenergy LLC, Russia

Hybrid hydrogen-vanadium fuel cell for electrical energy storage

Page 152

Trung Van Nguyen

The University of Kansas, USA

Stabilization of the positive electrolyte for a vanadium flow battery using $Fe_2(SO_4)_3$ additive at 50 °C

Page 154

Baoguo Wang, Zenghui Li, Yuqun Lin, Lei Wan Dept of Chemical Engineering, Tsinghua University, China

A low-cost and scalable zinc iodine-bromide flow battery for bulk energy storage Page 156

Zengyue Wang, Simon Long Yin Tam, and Yi-Chun Lu

Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and
Automation Engineering, The Chinese University of Hong Kong, Hong Kong

Open-circuit potential prediction and its applications in modeling and simulation of hydrogen-bromine redox flow batteries

Page 158

Jakub Wlodarczyk, Michael Küttinger, Peter Fischer, Jürgen O. Schumacher Zurich University of Applied Sciences (ZHAW), Institute of Computational Physics (ICP), Switzerland

Fraunhofer Institute for Chemical Technology, Germany

Advancement of Nafion[™] membrane for vanadium flow battery applications

Page 160

Ruidong Yang, Jan Lenders, Michael Raiford, Robert Moffett
Nafion™ Ion Exchange Materials, The Chemours Company, USA
Nafion™ Ion Exchange Materials, Chemours Belgium BVBA, Belgium

Field experience and advancement of the new generation VRFB

Page 162

Zhenguo "Gary" Yang, Chauncey Sun, David Ridley, Rick Winter UniEnergy Technologies, USA

Enhanced aqueous organic redox flow battery by solid boosters

Page 164

Elena Zanzola, S. Gentil, G. Gschwend, D. Reynard, E. Smirnov, C. Dennison, H.H. Girault, P. Peljo

Laboratory of Physical and Analytical Chemistry (LEPA), École Polytechnique Fédérale de Lausanne – EPFL, Switzerland

Research group of Physical Electrochemistry and Electrochemical Physics, Department of Chemistry and Materials Science, Aalto University, Finland

Crossover-tolerant hydrogen electrocatalysts in hydrogen/bromine redox flow battery Page 166

David Zitoun, Kobby Saadi

Department of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Israel

The development of low cost, intrinsically safe flow batteries to meet the commercial challenge from competing battery technologies

Page 168 Huamin Zhang Dalian Institute of Chemical Physics, Chinese Academy of Science, China Rongke Power Co., Ltd, China