IFBF 2013 List of Conference Papers

Print ISBN: 978-0-9571055-3-9 Digital ISBN: 978-1-9164518-3-4

A dual-circuit cerium-vanadium redox flow battery for water electrolysis

Page 8

Véronique Amstutz, Kathryn E. Toghill, Hubert H. Girault Ecole Polytechnique Fédérale de Lausanne, Switzerland

Insights into hydrogen/bromine flow batteries

Page 10

Kyu Taek Cho, Adam Z. Weber, Vincent Battaglia and Venkat Srinivasan Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, USA

The importance of material selection and exploitation for improving flow battery cost and performances

Page 12

Paula Cojocaru, Luca Merlo, Francesco Triulzi, Marco Apostolo *Solvay Specialty Polymers, Italy*

What a redox flow battery really has to cost?

Page 14

Martin Dennenmoser, Sebastian Steininger, Heidrun Reile, Joachim Went, Matthias Vetter Fraunhofer Institute for Solar Energy Systems ISE, Germany

Plasma activated modification of ion exchange membrane for vanadium crossover removal

Page 16

Francisco Fernández-Carretero, Daniel González-Santamaria, Alberto García-Luis, Mikel Insausti-Munduate

Tecnalia, Spain

Testing and analysis of vanadium redox flow battery – learning from fuel cell research Page 18

Peter Fischer, Karsten Pinkwart, Heinz Sander, Erich Gülzow, Stefan Heidemann, Stephan Moeller

Fraunhofer Institute for Chemical Technology (FhG-ICT), Department of Applied Electrochemistry, Germany

Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Technical Thermodynamics, Germany

balticFuelCells GmbH, Schwerin, Germany

Spectroscopic study of VO²⁺/VO₂+ electrolytes

Page 20

Xin Gao, Andrea Bourke, Robert P. Lynch, Martin J. Leahy and D. Noel Buckley Dept. of Physics and Energy, Charles Parsons Initiative on Energy and Sustainable Environment, Materials and Surface Science Institute, University of Limerick, Ireland

Operating experiences: scalable and modular VRFB energy storage systems under real conditions

Page 22

Stefan Haslinger, Ilja Pawel, Martin Harrer, Adam H. Whitehead Gildemeister Energy Solutions (Cellstrom GmbH), Austria Industriezentrum NÖ-Süd, Austria

Redox flow lithium-ion battery

Page 23

Qizhao Huang, Feng Pan and Qing Wang Department of Materials Science and Engineering, Faculty of Engineering, NUSNNI-NanoCore, National University of Singapore, Signapore

Introducing EnerVault's Engineered Cascade™ system: results from a novel redox flow battery architecture and use of mixed-species iron chromium electrolytes

Page 24

Dr. Craig R. Horne and Ronald J. Mosso EnerVault Corporation, USA

Corrosion of a carbon-based bipolar plates for vanadium redox flow batteries in presence of chloride

Page 26

Alan Kwan, Carolina Nunes Kirchner, Lidiya Komsiyska, Eva Maria Hammer, Sergio Alfredo Garnica Barragan, Meinert Lewerenz

NEXT ENERGY-EWE-Research Centre for Energy Technology, Germany

Advanced diagnostics for redox flow batteries

Page 28

Qinghua Liu, Jason Clement, Thomas A. Zawodzinski Jr and Matthew M. Mench BRANE Laboratory, Department of Mechanical, Aerospace and Biomedical Engineering and Department of Chemical and Biomolecular Engineering University of Tennessee, USA Physical Chemistry of Materials Group, Oak Ridge National Laboratory, USA Emissions and Catalysis Research Group, Oak Ridge National Laboratory, USA

Field tests of the 1 MW x 5 hours vanadium flow battery system with the photovoltaic power system

Page 30

Yoshiyuki Nagaoka, Toshikazu Shibata, Takahiro Kumamoto, Kazunori Kawase, Keiji Yano Sumitomo Electric Industries, Ltd, Japan

Development of redox flow batteries for mobile applications

Page 32

J. Noack, F. Wandschneider, T. Herr, D. Palminteri, M. Hihn, T. Roth, G. Cognard, K. Stadelmann, P. Fischer, J. Tübke, K. Pinkwart, P. Elsner Fraunhofer Institute for Chemical Technology, Applied Electrochemistry, Germany

A power system operator's requirements for electrical energy storage

Page 34

Jonathan O'Sullivan,

Sustainable Power Systems, EirGrid plc, Ireland

Oxygen electrodes for alkaline metal-air flow batteries

Page 36

Derek Pletcher, Andrea A. Russell, Stephen W.T. Price, Stephen J. Thompson, Frank C.

Walsh, Xiaohong Li, Richard G.A.Wills and Scott F. Gorman

Chemistry, University of Southampton, UK

Carbon components in redox flow batteries – the past and the future from an industrial perspective

Page 38

Dirk Schneider, Rüdiger Schweiss

SGL Carbon GmbH, Germany

Scale-up of vanadium-redox-flow-stacks

Page 40

Thorsten Seipp, Sascha Berthold, Jens Burfeind, Christian Dötsch

Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Germany

Flow battery research to flow battery commercialisation

Page 42

Maria Skyllas-Kazacos

School of Chemical Engineering, University of New South Wales, Australia

The vanadium air redox flow battery project "tubulair±"

Page 45

Wolfgang Winkler

Institute for Energy Systems and Fuel Technology, Hamburg, Germany

Semi-solid flow cells

Page 46

Kyle C. Smith, Zheng Li, Nir Baram, Brandon J. Hopkins, Frank Fan, W. Craig Carter, and Yet-Ming Chiang

Massachusetts Institute of Technology, USA

Redox flow battery development for stationary energy storage applications at Pacific Northwest National Laboratory

Page 48

Vincent Sprenkle, Wei Wang, Qingtao Luo, Xiaoliang Wei, Bin Li, Zimin Nie, Baowei Chen, Vijayakumar Murugesan, David Reed, Ed Thomsen, Vilayanur Viswanathan, Brian Koeppel, David Stephenson, Alasdair Crawford

Pacific Northwest National Laboratory, Washington, USA

Redox flow batteries - design by the numbers

Page 50 Lawrence Thaller

USA

Large scale batteries - safety requirements for European Union and North America

Page 52 Werner Varro

TÜV-SÜD, Germany

Development of manufacture processes of key materials and VRFB stack for energy storage

Page 54

Baoguo Wang, Yongshen Fan, Weinan Guo, Shiqiang Song, Zhijun Jla R & D Centre of Flow Battery, Tsinghua University, China Dept of Chemical Engineering, Tsinghua University, China

Charge imbalance in the vanadium redox flow battery

Page 56

Adam H. Whitehead, Peter Pokorny, Markus Trampert and Paul Binder Gildemeister Energy Solutions (Cellstrom GmbH), Austria

Flow battery operating experience: residential scale

Page 58
Chris Winter
Redflow Limited, Australia

Chemistry & engineering to make a good vanadium battery better

Page 60

Rick Winter

UniEnergy Technologies, USA

Progress on the technology and utility-scale demonstration of vanadium flow battery

Page 62

Huamin Zhang, Xiaoli Wang, Zonghao Liu, Xianfeng Li

Division of energy storage, Dalian Institute of Chemical Physics, Chinese Academy of Science, China

Dalian Rongke Power Co. Ltd. (RKP), China

Improving performance through advanced materials for redox flow batteries

Page 64

Thomas A. Zawodzinski, Jr, Che Nan Sun, Zhijiang Tang, Douglas S. Aaron, Jamie Lawton, Michael Bright, Alan Pezeshki, Aexander B. Papandrew, and Matthew Mench Chemical and Biomolecular Engineering Department, University of Tennessee, USA Mechanical, Aerospace and Biomedical Engineering Department, University of Tennessee, USA

Physical Chemistry of Materials Group, Oak Ridge National Laboratory, USA

Operational experiences of using a 500 kWh zinc-bromine flow battery system in an industrial scale wind auto production application

Page 66

Raymond Byrne

Centre for Renewable Energy, Dundalk Institute of Technology, Ireland

Preparation and characterization of cathodes for vanadium-air-redox-flow batteries (VARFB) by electrochemical metal deposition on 3D carbon-based electrodes

Page 68

Jan grosse Austing, Eva Maria Hammer, Lidiya Komsiyska

NEXT ENERGY·EWE-Research Centre for Energy Technology, Germany

Carl-von Ossietzky-Str. 15, Germany

Towards bifunctional catalysts for vanadium-air redox flow batteries: preparation and characterization of Pt nanoparticles

Page 69

C. Gutsche, M. Knipper, H. Borchert, T. Plaggenborg and J. Parisi Department of Physics, Energy and Semiconductor Research Laboratory, University of Oldenburg, Germany

Asymmetric structured and highly soluble redox couples for non-aqueous redox flow battery

Page 70

Doo-Yeon Lee, Jung-Won Park, Duk-Jin Oh, Myung-Jin Lee, Basab Roy, Seok-Gwang Doo EV/ESS Group, Energy Storage Lab, Energy & Environment R&D Center, Samsung Advanced Institute of Technology, Samsung Electronics Ltd., Korea

Redox flow batteries with robust 3D-structured carbon-based electrodes

Page 72

J. Langner, S. Zils, C. Neumann, M. Otter, M. Bron, J. Melke, K. Nikolowski, H. Ehrenberg, C. Roth

Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien (IAM), Germany

Freudenberg Forschungsdienste, Germany

Heraeus Quarzglas, Germany

Martin-Luther-Universität Halle-Wittenberg, Technische Chemie erneuerbarer Energien, Germany

Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Germany

Performance of new generation vanadium mixed acid redox flow batteries

Page 73

Liyu Li, Rick Winter, and Gary Z. Yang UniEnergy Technologies, USA

Occupational safety issues with chloride-based redox flow batteries

Page 74

John McCann and Maria Skyllas-Kazacos

School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Australia

Development of cation exchange membrane for the all-vanadium redox flow battery

Page 75

Yong-Hwan Oh, Cheol-Hwi Ryu, Gab-Jin Hwang

Grad. School, Dep. Green Energy, Hoseo University, Korea

Integration and characterization of gaskets and frame into bipolar plates for vanadium redox flow battery applications

Page 76

Antonio Rodolfo dos Santos, Thorsten Hickmann, Thomas Turek, Ulrich Kunz Institute of Chemical Process Engineering, Clausthal University of Technology, Germany Energie-Forschungszentrum Niedersachsen, Germany Eisenhuth GmbH & Co. KG, Germany

Predictive model for electrolyte flow distribution in flow battery systems

Page 78

Jyothi Latha Tamalapakula and Sreenivas Jayanti

Department of Chemical Engineering, IIT Madras, India

Diffusion of vanadium ion (3+) and proton in hydrated Nafion membrane by molecular dynamic simulation

Page 80

Hwa-Jou Wei, Wen-Song Hwang, Lee-Chung Men Rouh-Chyu Ruaan

Chemistry Division, Institute of Nuclear Energy Research, Taiwan

Department of Chemical and Materials Engineering, National Central University, Taiwan

Development of ion exchange membranes for high energy efficiency redox flow batteries

Page 82

Masako Yoshioka, Ryohei Iwahara, Akira Nishimoto, Masahiro Yamashita and Masaru Kobayashi

Corporate Research Center, Toyobo Co., Ltd., Japan

Performance optimisation of a regenerative hydrogen vanadium fuel cell

Page 84

V. Yufit, P. Mazur, H. Hewa Dewage and N.P. Brandon

Department of Earth Science and Engineering, Imperial College London, UK